HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnval Structured version   Unicode version

Theorem nmfnval 26499
Description: Value of the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnval  |-  ( T : ~H --> CC  ->  (
normfn `  T )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) } ,  RR* ,  <  )
)
Distinct variable group:    x, y, T

Proof of Theorem nmfnval
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 xrltso 11347 . . 3  |-  <  Or  RR*
21supex 7923 . 2  |-  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  ( T `  y )
) ) } ,  RR* ,  <  )  e. 
_V
3 ax-hilex 25620 . 2  |-  ~H  e.  _V
4 cnex 9573 . 2  |-  CC  e.  _V
5 fveq1 5865 . . . . . . . 8  |-  ( t  =  T  ->  (
t `  y )  =  ( T `  y ) )
65fveq2d 5870 . . . . . . 7  |-  ( t  =  T  ->  ( abs `  ( t `  y ) )  =  ( abs `  ( T `  y )
) )
76eqeq2d 2481 . . . . . 6  |-  ( t  =  T  ->  (
x  =  ( abs `  ( t `  y
) )  <->  x  =  ( abs `  ( T `
 y ) ) ) )
87anbi2d 703 . . . . 5  |-  ( t  =  T  ->  (
( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( t `  y
) ) )  <->  ( ( normh `  y )  <_ 
1  /\  x  =  ( abs `  ( T `
 y ) ) ) ) )
98rexbidv 2973 . . . 4  |-  ( t  =  T  ->  ( E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( t `  y
) ) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( abs `  ( T `  y ) ) ) ) )
109abbidv 2603 . . 3  |-  ( t  =  T  ->  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( t `  y
) ) ) }  =  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) } )
1110supeq1d 7906 . 2  |-  ( t  =  T  ->  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
t `  y )
) ) } ,  RR* ,  <  )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) } ,  RR* ,  <  )
)
12 df-nmfn 26468 . 2  |-  normfn  =  ( t  e.  ( CC 
^m  ~H )  |->  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
t `  y )
) ) } ,  RR* ,  <  ) )
132, 3, 4, 11, 12fvmptmap 7455 1  |-  ( T : ~H --> CC  ->  (
normfn `  T )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) } ,  RR* ,  <  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379   {cab 2452   E.wrex 2815   class class class wbr 4447   -->wf 5584   ` cfv 5588   supcsup 7900   CCcc 9490   1c1 9493   RR*cxr 9627    < clt 9628    <_ cle 9629   abscabs 13030   ~Hchil 25540   normhcno 25544   normfncnmf 25572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-hilex 25620
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-nmfn 26468
This theorem is referenced by:  nmfnxr  26502  nmfnrepnf  26503  nmfnlb  26547  nmfnleub  26548  nmfn0  26610  nmcfnexi  26674  branmfn  26728
  Copyright terms: Public domain W3C validator