HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnrepnf Structured version   Unicode version

Theorem nmfnrepnf 25421
Description: The norm of a Hilbert space functional is either real or plus infinity. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnrepnf  |-  ( T : ~H --> CC  ->  ( ( normfn `  T )  e.  RR  <->  ( normfn `  T
)  =/= +oo )
)

Proof of Theorem nmfnrepnf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmfnsetre 25418 . . 3  |-  ( T : ~H --> CC  ->  { x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( abs `  ( T `  y ) ) ) }  C_  RR )
2 nmfnsetn0 25419 . . . 4  |-  ( abs `  ( T `  0h ) )  e.  {
x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( abs `  ( T `  y ) ) ) }
3 ne0i 3743 . . . 4  |-  ( ( abs `  ( T `
 0h ) )  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) }  ->  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) }  =/=  (/) )
42, 3ax-mp 5 . . 3  |-  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) }  =/=  (/)
5 supxrre2 11397 . . 3  |-  ( ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  ( T `  y )
) ) }  C_  RR  /\  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) }  =/=  (/) )  ->  ( sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) } ,  RR* ,  <  )  e.  RR  <->  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) } ,  RR* ,  <  )  =/= +oo ) )
61, 4, 5sylancl 662 . 2  |-  ( T : ~H --> CC  ->  ( sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) } ,  RR* ,  <  )  e.  RR  <->  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) } ,  RR* ,  <  )  =/= +oo ) )
7 nmfnval 25417 . . 3  |-  ( T : ~H --> CC  ->  (
normfn `  T )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) } ,  RR* ,  <  )
)
87eleq1d 2520 . 2  |-  ( T : ~H --> CC  ->  ( ( normfn `  T )  e.  RR  <->  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) } ,  RR* ,  <  )  e.  RR ) )
97neeq1d 2725 . 2  |-  ( T : ~H --> CC  ->  ( ( normfn `  T )  =/= +oo  <->  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( T `  y
) ) ) } ,  RR* ,  <  )  =/= +oo ) )
106, 8, 93bitr4d 285 1  |-  ( T : ~H --> CC  ->  ( ( normfn `  T )  e.  RR  <->  ( normfn `  T
)  =/= +oo )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   {cab 2436    =/= wne 2644   E.wrex 2796    C_ wss 3428   (/)c0 3737   class class class wbr 4392   -->wf 5514   ` cfv 5518   supcsup 7793   CCcc 9383   RRcr 9384   1c1 9386   +oocpnf 9518   RR*cxr 9520    < clt 9521    <_ cle 9522   abscabs 12827   ~Hchil 24458   normhcno 24462   0hc0v 24463   normfncnmf 24490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462  ax-pre-sup 9463  ax-hilex 24538  ax-hv0cl 24542  ax-hvmul0 24549  ax-hfi 24618  ax-his3 24623
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-2nd 6680  df-recs 6934  df-rdg 6968  df-er 7203  df-map 7318  df-en 7413  df-dom 7414  df-sdom 7415  df-sup 7794  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-div 10097  df-nn 10426  df-2 10483  df-3 10484  df-n0 10683  df-z 10750  df-uz 10965  df-rp 11095  df-seq 11910  df-exp 11969  df-cj 12692  df-re 12693  df-im 12694  df-sqr 12828  df-abs 12829  df-hnorm 24507  df-nmfn 25386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator