HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfn0 Structured version   Unicode version

Theorem nmfn0 27501
Description: The norm of the identically zero functional is zero. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmfn0  |-  ( normfn `  ( ~H  X.  {
0 } ) )  =  0

Proof of Theorem nmfn0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lnfn 27499 . . 3  |-  ( ~H 
X.  { 0 } )  e.  LinFn
2 lnfnf 27398 . . 3  |-  ( ( ~H  X.  { 0 } )  e.  LinFn  -> 
( ~H  X.  {
0 } ) : ~H --> CC )
3 nmfnval 27390 . . 3  |-  ( ( ~H  X.  { 0 } ) : ~H --> CC  ->  ( normfn `  ( ~H  X.  { 0 } ) )  =  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( ~H  X.  {
0 } ) `  y ) ) ) } ,  RR* ,  <  ) )
41, 2, 3mp2b 10 . 2  |-  ( normfn `  ( ~H  X.  {
0 } ) )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( abs `  ( ( ~H 
X.  { 0 } ) `  y ) ) ) } ,  RR* ,  <  )
5 c0ex 9626 . . . . . . . . . . . 12  |-  0  e.  _V
65fvconst2 6126 . . . . . . . . . . 11  |-  ( y  e.  ~H  ->  (
( ~H  X.  {
0 } ) `  y )  =  0 )
76fveq2d 5876 . . . . . . . . . 10  |-  ( y  e.  ~H  ->  ( abs `  ( ( ~H 
X.  { 0 } ) `  y ) )  =  ( abs `  0 ) )
8 abs0 13316 . . . . . . . . . 10  |-  ( abs `  0 )  =  0
97, 8syl6eq 2477 . . . . . . . . 9  |-  ( y  e.  ~H  ->  ( abs `  ( ( ~H 
X.  { 0 } ) `  y ) )  =  0 )
109eqeq2d 2434 . . . . . . . 8  |-  ( y  e.  ~H  ->  (
x  =  ( abs `  ( ( ~H  X.  { 0 } ) `
 y ) )  <-> 
x  =  0 ) )
1110anbi2d 708 . . . . . . 7  |-  ( y  e.  ~H  ->  (
( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( ~H  X.  { 0 } ) `
 y ) ) )  <->  ( ( normh `  y )  <_  1  /\  x  =  0
) ) )
1211rexbiia 2924 . . . . . 6  |-  ( E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( ~H  X.  {
0 } ) `  y ) ) )  <->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  0 ) )
13 ax-hv0cl 26517 . . . . . . . 8  |-  0h  e.  ~H
14 0le1 10126 . . . . . . . 8  |-  0  <_  1
15 fveq2 5872 . . . . . . . . . . 11  |-  ( y  =  0h  ->  ( normh `  y )  =  ( normh `  0h )
)
16 norm0 26642 . . . . . . . . . . 11  |-  ( normh `  0h )  =  0
1715, 16syl6eq 2477 . . . . . . . . . 10  |-  ( y  =  0h  ->  ( normh `  y )  =  0 )
1817breq1d 4427 . . . . . . . . 9  |-  ( y  =  0h  ->  (
( normh `  y )  <_  1  <->  0  <_  1
) )
1918rspcev 3179 . . . . . . . 8  |-  ( ( 0h  e.  ~H  /\  0  <_  1 )  ->  E. y  e.  ~H  ( normh `  y )  <_  1 )
2013, 14, 19mp2an 676 . . . . . . 7  |-  E. y  e.  ~H  ( normh `  y
)  <_  1
21 r19.41v 2978 . . . . . . 7  |-  ( E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  0 )  <->  ( E. y  e.  ~H  ( normh `  y )  <_ 
1  /\  x  = 
0 ) )
2220, 21mpbiran 926 . . . . . 6  |-  ( E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  0 )  <->  x  = 
0 )
2312, 22bitri 252 . . . . 5  |-  ( E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( ~H  X.  {
0 } ) `  y ) ) )  <-> 
x  =  0 )
2423abbii 2554 . . . 4  |-  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( ~H  X.  { 0 } ) `
 y ) ) ) }  =  {
x  |  x  =  0 }
25 df-sn 3994 . . . 4  |-  { 0 }  =  { x  |  x  =  0 }
2624, 25eqtr4i 2452 . . 3  |-  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( ~H  X.  { 0 } ) `
 y ) ) ) }  =  {
0 }
2726supeq1i 7958 . 2  |-  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( ~H  X.  {
0 } ) `  y ) ) ) } ,  RR* ,  <  )  =  sup ( { 0 } ,  RR* ,  <  )
28 xrltso 11429 . . 3  |-  <  Or  RR*
29 0xr 9676 . . 3  |-  0  e.  RR*
30 supsn 7985 . . 3  |-  ( (  <  Or  RR*  /\  0  e.  RR* )  ->  sup ( { 0 } ,  RR* ,  <  )  =  0 )
3128, 29, 30mp2an 676 . 2  |-  sup ( { 0 } ,  RR* ,  <  )  =  0
324, 27, 313eqtri 2453 1  |-  ( normfn `  ( ~H  X.  {
0 } ) )  =  0
Colors of variables: wff setvar class
Syntax hints:    /\ wa 370    = wceq 1437    e. wcel 1867   {cab 2405   E.wrex 2774   {csn 3993   class class class wbr 4417    Or wor 4765    X. cxp 4843   -->wf 5588   ` cfv 5592   supcsup 7951   CCcc 9526   0cc0 9528   1c1 9529   RR*cxr 9663    < clt 9664    <_ cle 9665   abscabs 13265   ~Hchil 26433   normhcno 26437   0hc0v 26438   normfncnmf 26465   LinFnclf 26468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605  ax-hilex 26513  ax-hfvadd 26514  ax-hv0cl 26517  ax-hfvmul 26519  ax-hvmul0 26524  ax-hfi 26593  ax-his3 26598
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6698  df-2nd 6799  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-er 7362  df-map 7473  df-en 7569  df-dom 7570  df-sdom 7571  df-sup 7953  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-div 10259  df-nn 10599  df-2 10657  df-n0 10859  df-z 10927  df-uz 11149  df-rp 11292  df-seq 12200  df-exp 12259  df-cj 13130  df-re 13131  df-im 13132  df-sqrt 13266  df-abs 13267  df-hnorm 26482  df-nmfn 27359  df-lnfn 27362
This theorem is referenced by:  nmbdfnlb  27564  branmfn  27619
  Copyright terms: Public domain W3C validator