MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmdvr Unicode version

Theorem nmdvr 18659
Description: The norm of a division in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nmdvr.x  |-  X  =  ( Base `  R
)
nmdvr.n  |-  N  =  ( norm `  R
)
nmdvr.u  |-  U  =  (Unit `  R )
nmdvr.d  |-  ./  =  (/r
`  R )
Assertion
Ref Expression
nmdvr  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  -> 
( N `  ( A  ./  B ) )  =  ( ( N `
 A )  / 
( N `  B
) ) )

Proof of Theorem nmdvr
StepHypRef Expression
1 simpll 731 . . . 4  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  ->  R  e. NrmRing )
2 simprl 733 . . . 4  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  ->  A  e.  X )
3 nrgrng 18652 . . . . . 6  |-  ( R  e. NrmRing  ->  R  e.  Ring )
43ad2antrr 707 . . . . 5  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  ->  R  e.  Ring )
5 simprr 734 . . . . 5  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  ->  B  e.  U )
6 nmdvr.u . . . . . 6  |-  U  =  (Unit `  R )
7 eqid 2404 . . . . . 6  |-  ( invr `  R )  =  (
invr `  R )
8 nmdvr.x . . . . . 6  |-  X  =  ( Base `  R
)
96, 7, 8rnginvcl 15736 . . . . 5  |-  ( ( R  e.  Ring  /\  B  e.  U )  ->  (
( invr `  R ) `  B )  e.  X
)
104, 5, 9syl2anc 643 . . . 4  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  -> 
( ( invr `  R
) `  B )  e.  X )
11 nmdvr.n . . . . 5  |-  N  =  ( norm `  R
)
12 eqid 2404 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
138, 11, 12nmmul 18653 . . . 4  |-  ( ( R  e. NrmRing  /\  A  e.  X  /\  ( (
invr `  R ) `  B )  e.  X
)  ->  ( N `  ( A ( .r
`  R ) ( ( invr `  R
) `  B )
) )  =  ( ( N `  A
)  x.  ( N `
 ( ( invr `  R ) `  B
) ) ) )
141, 2, 10, 13syl3anc 1184 . . 3  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  -> 
( N `  ( A ( .r `  R ) ( (
invr `  R ) `  B ) ) )  =  ( ( N `
 A )  x.  ( N `  (
( invr `  R ) `  B ) ) ) )
15 simplr 732 . . . . 5  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  ->  R  e. NzRing )
1611, 6, 7nminvr 18658 . . . . 5  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  B  e.  U
)  ->  ( N `  ( ( invr `  R
) `  B )
)  =  ( 1  /  ( N `  B ) ) )
171, 15, 5, 16syl3anc 1184 . . . 4  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  -> 
( N `  (
( invr `  R ) `  B ) )  =  ( 1  /  ( N `  B )
) )
1817oveq2d 6056 . . 3  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  -> 
( ( N `  A )  x.  ( N `  ( ( invr `  R ) `  B ) ) )  =  ( ( N `
 A )  x.  ( 1  /  ( N `  B )
) ) )
1914, 18eqtrd 2436 . 2  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  -> 
( N `  ( A ( .r `  R ) ( (
invr `  R ) `  B ) ) )  =  ( ( N `
 A )  x.  ( 1  /  ( N `  B )
) ) )
20 nmdvr.d . . . . 5  |-  ./  =  (/r
`  R )
218, 12, 6, 7, 20dvrval 15745 . . . 4  |-  ( ( A  e.  X  /\  B  e.  U )  ->  ( A  ./  B
)  =  ( A ( .r `  R
) ( ( invr `  R ) `  B
) ) )
2221adantl 453 . . 3  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  -> 
( A  ./  B
)  =  ( A ( .r `  R
) ( ( invr `  R ) `  B
) ) )
2322fveq2d 5691 . 2  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  -> 
( N `  ( A  ./  B ) )  =  ( N `  ( A ( .r `  R ) ( (
invr `  R ) `  B ) ) ) )
24 nrgngp 18651 . . . . . 6  |-  ( R  e. NrmRing  ->  R  e. NrmGrp )
2524ad2antrr 707 . . . . 5  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  ->  R  e. NrmGrp )
268, 11nmcl 18615 . . . . 5  |-  ( ( R  e. NrmGrp  /\  A  e.  X )  ->  ( N `  A )  e.  RR )
2725, 2, 26syl2anc 643 . . . 4  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  -> 
( N `  A
)  e.  RR )
2827recnd 9070 . . 3  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  -> 
( N `  A
)  e.  CC )
298, 6unitss 15720 . . . . . 6  |-  U  C_  X
3029, 5sseldi 3306 . . . . 5  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  ->  B  e.  X )
318, 11nmcl 18615 . . . . 5  |-  ( ( R  e. NrmGrp  /\  B  e.  X )  ->  ( N `  B )  e.  RR )
3225, 30, 31syl2anc 643 . . . 4  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  -> 
( N `  B
)  e.  RR )
3332recnd 9070 . . 3  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  -> 
( N `  B
)  e.  CC )
3411, 6unitnmn0 18657 . . . . 5  |-  ( ( R  e. NrmRing  /\  R  e. NzRing  /\  B  e.  U
)  ->  ( N `  B )  =/=  0
)
35343expa 1153 . . . 4  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  B  e.  U )  ->  ( N `  B )  =/=  0 )
3635adantrl 697 . . 3  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  -> 
( N `  B
)  =/=  0 )
3728, 33, 36divrecd 9749 . 2  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  -> 
( ( N `  A )  /  ( N `  B )
)  =  ( ( N `  A )  x.  ( 1  / 
( N `  B
) ) ) )
3819, 23, 373eqtr4d 2446 1  |-  ( ( ( R  e. NrmRing  /\  R  e. NzRing )  /\  ( A  e.  X  /\  B  e.  U ) )  -> 
( N `  ( A  ./  B ) )  =  ( ( N `
 A )  / 
( N `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   ` cfv 5413  (class class class)co 6040   RRcr 8945   0cc0 8946   1c1 8947    x. cmul 8951    / cdiv 9633   Basecbs 13424   .rcmulr 13485   Ringcrg 15615  Unitcui 15699   invrcinvr 15731  /rcdvr 15742  NzRingcnzr 16283   normcnm 18577  NrmGrpcngp 18578  NrmRingcnrg 18580
This theorem is referenced by:  qqhnm  24327
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-tpos 6438  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ico 10878  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-topgen 13622  df-0g 13682  df-mnd 14645  df-grp 14767  df-minusg 14768  df-mgp 15604  df-rng 15618  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-invr 15732  df-dvr 15743  df-abv 15860  df-nzr 16284  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-xms 18303  df-ms 18304  df-nm 18583  df-ngp 18584  df-nrg 18586
  Copyright terms: Public domain W3C validator