MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmcvcn Structured version   Unicode version

Theorem nmcvcn 25428
Description: The norm of a normed complex vector space is a continuous function. (Contributed by NM, 16-May-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcvcn.1  |-  N  =  ( normCV `  U )
nmcvcn.2  |-  C  =  ( IndMet `  U )
nmcvcn.j  |-  J  =  ( MetOpen `  C )
nmcvcn.k  |-  K  =  ( topGen `  ran  (,) )
Assertion
Ref Expression
nmcvcn  |-  ( U  e.  NrmCVec  ->  N  e.  ( J  Cn  K ) )

Proof of Theorem nmcvcn
Dummy variables  e 
d  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . 3  |-  ( BaseSet `  U )  =  (
BaseSet `  U )
2 nmcvcn.1 . . 3  |-  N  =  ( normCV `  U )
31, 2nvf 25384 . 2  |-  ( U  e.  NrmCVec  ->  N : (
BaseSet `  U ) --> RR )
4 simprr 756 . . . 4  |-  ( ( U  e.  NrmCVec  /\  (
x  e.  ( BaseSet `  U )  /\  e  e.  RR+ ) )  -> 
e  e.  RR+ )
51, 2nvcl 25385 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )
)  ->  ( N `  x )  e.  RR )
65ex 434 . . . . . . . . . . . . 13  |-  ( U  e.  NrmCVec  ->  ( x  e.  ( BaseSet `  U )  ->  ( N `  x
)  e.  RR ) )
71, 2nvcl 25385 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  y  e.  ( BaseSet `  U )
)  ->  ( N `  y )  e.  RR )
87ex 434 . . . . . . . . . . . . 13  |-  ( U  e.  NrmCVec  ->  ( y  e.  ( BaseSet `  U )  ->  ( N `  y
)  e.  RR ) )
96, 8anim12d 563 . . . . . . . . . . . 12  |-  ( U  e.  NrmCVec  ->  ( ( x  e.  ( BaseSet `  U
)  /\  y  e.  ( BaseSet `  U )
)  ->  ( ( N `  x )  e.  RR  /\  ( N `
 y )  e.  RR ) ) )
10 eqid 2467 . . . . . . . . . . . . . 14  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
1110remet 21163 . . . . . . . . . . . . 13  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( Met `  RR )
12 metcl 20703 . . . . . . . . . . . . 13  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( Met `  RR )  /\  ( N `  x )  e.  RR  /\  ( N `  y
)  e.  RR )  ->  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  e.  RR )
1311, 12mp3an1 1311 . . . . . . . . . . . 12  |-  ( ( ( N `  x
)  e.  RR  /\  ( N `  y )  e.  RR )  -> 
( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  e.  RR )
149, 13syl6 33 . . . . . . . . . . 11  |-  ( U  e.  NrmCVec  ->  ( ( x  e.  ( BaseSet `  U
)  /\  y  e.  ( BaseSet `  U )
)  ->  ( ( N `  x )
( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  e.  RR ) )
15143impib 1194 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  e.  RR )
16 nmcvcn.2 . . . . . . . . . . . 12  |-  C  =  ( IndMet `  U )
171, 16imsmet 25420 . . . . . . . . . . 11  |-  ( U  e.  NrmCVec  ->  C  e.  ( Met `  ( BaseSet `  U ) ) )
18 metcl 20703 . . . . . . . . . . 11  |-  ( ( C  e.  ( Met `  ( BaseSet `  U )
)  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( x C y )  e.  RR )
1917, 18syl3an1 1261 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( x C y )  e.  RR )
20 eqid 2467 . . . . . . . . . . . 12  |-  ( +v
`  U )  =  ( +v `  U
)
21 eqid 2467 . . . . . . . . . . . 12  |-  ( .sOLD `  U )  =  ( .sOLD `  U )
221, 20, 21, 2nvabs 25399 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( abs `  (
( N `  x
)  -  ( N `
 y ) ) )  <_  ( N `  ( x ( +v
`  U ) (
-u 1 ( .sOLD `  U ) y ) ) ) )
2393impib 1194 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( ( N `
 x )  e.  RR  /\  ( N `
 y )  e.  RR ) )
2410remetdval 21162 . . . . . . . . . . . 12  |-  ( ( ( N `  x
)  e.  RR  /\  ( N `  y )  e.  RR )  -> 
( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  =  ( abs `  (
( N `  x
)  -  ( N `
 y ) ) ) )
2523, 24syl 16 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  =  ( abs `  (
( N `  x
)  -  ( N `
 y ) ) ) )
261, 20, 21, 2, 16imsdval2 25416 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( x C y )  =  ( N `  ( x ( +v `  U
) ( -u 1
( .sOLD `  U ) y ) ) ) )
2722, 25, 263brtr4d 4483 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <_  ( x C y ) )
2815, 19, 27jca31 534 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( ( ( ( N `  x
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( N `  y
) )  e.  RR  /\  ( x C y )  e.  RR )  /\  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <_  ( x C y ) ) )
29283expa 1196 . . . . . . . 8  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U ) )  /\  y  e.  ( BaseSet `  U ) )  -> 
( ( ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  e.  RR  /\  ( x C y )  e.  RR )  /\  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <_  ( x C y ) ) )
30 rpre 11238 . . . . . . . 8  |-  ( e  e.  RR+  ->  e  e.  RR )
31 lelttr 9687 . . . . . . . . . . 11  |-  ( ( ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  e.  RR  /\  (
x C y )  e.  RR  /\  e  e.  RR )  ->  (
( ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <_  ( x C y )  /\  (
x C y )  <  e )  -> 
( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
32313expa 1196 . . . . . . . . . 10  |-  ( ( ( ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  e.  RR  /\  (
x C y )  e.  RR )  /\  e  e.  RR )  ->  ( ( ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  <_  (
x C y )  /\  ( x C y )  <  e
)  ->  ( ( N `  x )
( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  <  e
) )
3332expdimp 437 . . . . . . . . 9  |-  ( ( ( ( ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  e.  RR  /\  ( x C y )  e.  RR )  /\  e  e.  RR )  /\  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <_  ( x C y ) )  -> 
( ( x C y )  <  e  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
3433an32s 802 . . . . . . . 8  |-  ( ( ( ( ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  e.  RR  /\  ( x C y )  e.  RR )  /\  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <_  ( x C y ) )  /\  e  e.  RR )  ->  ( ( x C y )  <  e  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
3529, 30, 34syl2an 477 . . . . . . 7  |-  ( ( ( ( U  e.  NrmCVec 
/\  x  e.  (
BaseSet `  U ) )  /\  y  e.  (
BaseSet `  U ) )  /\  e  e.  RR+ )  ->  ( ( x C y )  < 
e  ->  ( ( N `  x )
( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  <  e
) )
3635ex 434 . . . . . 6  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U ) )  /\  y  e.  ( BaseSet `  U ) )  -> 
( e  e.  RR+  ->  ( ( x C y )  <  e  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) ) )
3736ralrimdva 2885 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )
)  ->  ( e  e.  RR+  ->  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  e  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) ) )
3837impr 619 . . . 4  |-  ( ( U  e.  NrmCVec  /\  (
x  e.  ( BaseSet `  U )  /\  e  e.  RR+ ) )  ->  A. y  e.  ( BaseSet
`  U ) ( ( x C y )  <  e  -> 
( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
39 breq2 4457 . . . . . . 7  |-  ( d  =  e  ->  (
( x C y )  <  d  <->  ( x C y )  < 
e ) )
4039imbi1d 317 . . . . . 6  |-  ( d  =  e  ->  (
( ( x C y )  <  d  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e )  <->  ( (
x C y )  <  e  ->  (
( N `  x
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( N `  y
) )  <  e
) ) )
4140ralbidv 2906 . . . . 5  |-  ( d  =  e  ->  ( A. y  e.  ( BaseSet
`  U ) ( ( x C y )  <  d  -> 
( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e )  <->  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  e  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) ) )
4241rspcev 3219 . . . 4  |-  ( ( e  e.  RR+  /\  A. y  e.  ( BaseSet `  U ) ( ( x C y )  <  e  ->  (
( N `  x
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( N `  y
) )  <  e
) )  ->  E. d  e.  RR+  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  d  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
434, 38, 42syl2anc 661 . . 3  |-  ( ( U  e.  NrmCVec  /\  (
x  e.  ( BaseSet `  U )  /\  e  e.  RR+ ) )  ->  E. d  e.  RR+  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  d  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
4443ralrimivva 2888 . 2  |-  ( U  e.  NrmCVec  ->  A. x  e.  (
BaseSet `  U ) A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  d  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
451, 16imsxmet 25421 . . 3  |-  ( U  e.  NrmCVec  ->  C  e.  ( *Met `  ( BaseSet
`  U ) ) )
4610rexmet 21164 . . 3  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )
47 nmcvcn.j . . . 4  |-  J  =  ( MetOpen `  C )
48 nmcvcn.k . . . . 5  |-  K  =  ( topGen `  ran  (,) )
49 eqid 2467 . . . . . 6  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )
5010, 49tgioo 21169 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) )
5148, 50eqtri 2496 . . . 4  |-  K  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) )
5247, 51metcn 20914 . . 3  |-  ( ( C  e.  ( *Met `  ( BaseSet `  U ) )  /\  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR ) )  -> 
( N  e.  ( J  Cn  K )  <-> 
( N : (
BaseSet `  U ) --> RR 
/\  A. x  e.  (
BaseSet `  U ) A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  d  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) ) ) )
5345, 46, 52sylancl 662 . 2  |-  ( U  e.  NrmCVec  ->  ( N  e.  ( J  Cn  K
)  <->  ( N :
( BaseSet `  U ) --> RR  /\  A. x  e.  ( BaseSet `  U ) A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  d  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) ) ) )
543, 44, 53mpbir2and 920 1  |-  ( U  e.  NrmCVec  ->  N  e.  ( J  Cn  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2817   E.wrex 2818   class class class wbr 4453    X. cxp 5003   ran crn 5006    |` cres 5007    o. ccom 5009   -->wf 5590   ` cfv 5594  (class class class)co 6295   RRcr 9503   1c1 9505    < clt 9640    <_ cle 9641    - cmin 9817   -ucneg 9818   RR+crp 11232   (,)cioo 11541   abscabs 13047   topGenctg 14710   *Metcxmt 18273   Metcme 18274   MetOpencmopn 18278    Cn ccn 19593   NrmCVeccnv 25300   +vcpv 25301   BaseSetcba 25302   .sOLDcns 25303   normCVcnmcv 25306   IndMetcims 25307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-addf 9583  ax-mulf 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-ioo 11545  df-seq 12088  df-exp 12147  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-topgen 14716  df-psmet 18281  df-xmet 18282  df-met 18283  df-bl 18284  df-mopn 18285  df-top 19268  df-bases 19270  df-topon 19271  df-cn 19596  df-cnp 19597  df-grpo 25016  df-gid 25017  df-ginv 25018  df-gdiv 25019  df-ablo 25107  df-vc 25262  df-nv 25308  df-va 25311  df-ba 25312  df-sm 25313  df-0v 25314  df-vs 25315  df-nmcv 25316  df-ims 25317
This theorem is referenced by:  nmcnc  25429
  Copyright terms: Public domain W3C validator