MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmcvcn Structured version   Unicode version

Theorem nmcvcn 24262
Description: The norm of a normed complex vector space is a continuous function. (Contributed by NM, 16-May-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcvcn.1  |-  N  =  ( normCV `  U )
nmcvcn.2  |-  C  =  ( IndMet `  U )
nmcvcn.j  |-  J  =  ( MetOpen `  C )
nmcvcn.k  |-  K  =  ( topGen `  ran  (,) )
Assertion
Ref Expression
nmcvcn  |-  ( U  e.  NrmCVec  ->  N  e.  ( J  Cn  K ) )

Proof of Theorem nmcvcn
Dummy variables  e 
d  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2454 . . 3  |-  ( BaseSet `  U )  =  (
BaseSet `  U )
2 nmcvcn.1 . . 3  |-  N  =  ( normCV `  U )
31, 2nvf 24218 . 2  |-  ( U  e.  NrmCVec  ->  N : (
BaseSet `  U ) --> RR )
4 simprr 756 . . . 4  |-  ( ( U  e.  NrmCVec  /\  (
x  e.  ( BaseSet `  U )  /\  e  e.  RR+ ) )  -> 
e  e.  RR+ )
51, 2nvcl 24219 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )
)  ->  ( N `  x )  e.  RR )
65ex 434 . . . . . . . . . . . . 13  |-  ( U  e.  NrmCVec  ->  ( x  e.  ( BaseSet `  U )  ->  ( N `  x
)  e.  RR ) )
71, 2nvcl 24219 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  y  e.  ( BaseSet `  U )
)  ->  ( N `  y )  e.  RR )
87ex 434 . . . . . . . . . . . . 13  |-  ( U  e.  NrmCVec  ->  ( y  e.  ( BaseSet `  U )  ->  ( N `  y
)  e.  RR ) )
96, 8anim12d 563 . . . . . . . . . . . 12  |-  ( U  e.  NrmCVec  ->  ( ( x  e.  ( BaseSet `  U
)  /\  y  e.  ( BaseSet `  U )
)  ->  ( ( N `  x )  e.  RR  /\  ( N `
 y )  e.  RR ) ) )
10 eqid 2454 . . . . . . . . . . . . . 14  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
1110remet 20502 . . . . . . . . . . . . 13  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( Met `  RR )
12 metcl 20042 . . . . . . . . . . . . 13  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( Met `  RR )  /\  ( N `  x )  e.  RR  /\  ( N `  y
)  e.  RR )  ->  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  e.  RR )
1311, 12mp3an1 1302 . . . . . . . . . . . 12  |-  ( ( ( N `  x
)  e.  RR  /\  ( N `  y )  e.  RR )  -> 
( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  e.  RR )
149, 13syl6 33 . . . . . . . . . . 11  |-  ( U  e.  NrmCVec  ->  ( ( x  e.  ( BaseSet `  U
)  /\  y  e.  ( BaseSet `  U )
)  ->  ( ( N `  x )
( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  e.  RR ) )
15143impib 1186 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  e.  RR )
16 nmcvcn.2 . . . . . . . . . . . 12  |-  C  =  ( IndMet `  U )
171, 16imsmet 24254 . . . . . . . . . . 11  |-  ( U  e.  NrmCVec  ->  C  e.  ( Met `  ( BaseSet `  U ) ) )
18 metcl 20042 . . . . . . . . . . 11  |-  ( ( C  e.  ( Met `  ( BaseSet `  U )
)  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( x C y )  e.  RR )
1917, 18syl3an1 1252 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( x C y )  e.  RR )
20 eqid 2454 . . . . . . . . . . . 12  |-  ( +v
`  U )  =  ( +v `  U
)
21 eqid 2454 . . . . . . . . . . . 12  |-  ( .sOLD `  U )  =  ( .sOLD `  U )
221, 20, 21, 2nvabs 24233 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( abs `  (
( N `  x
)  -  ( N `
 y ) ) )  <_  ( N `  ( x ( +v
`  U ) (
-u 1 ( .sOLD `  U ) y ) ) ) )
2393impib 1186 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( ( N `
 x )  e.  RR  /\  ( N `
 y )  e.  RR ) )
2410remetdval 20501 . . . . . . . . . . . 12  |-  ( ( ( N `  x
)  e.  RR  /\  ( N `  y )  e.  RR )  -> 
( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  =  ( abs `  (
( N `  x
)  -  ( N `
 y ) ) ) )
2523, 24syl 16 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  =  ( abs `  (
( N `  x
)  -  ( N `
 y ) ) ) )
261, 20, 21, 2, 16imsdval2 24250 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( x C y )  =  ( N `  ( x ( +v `  U
) ( -u 1
( .sOLD `  U ) y ) ) ) )
2722, 25, 263brtr4d 4433 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <_  ( x C y ) )
2815, 19, 27jca31 534 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )  /\  y  e.  ( BaseSet
`  U ) )  ->  ( ( ( ( N `  x
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( N `  y
) )  e.  RR  /\  ( x C y )  e.  RR )  /\  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <_  ( x C y ) ) )
29283expa 1188 . . . . . . . 8  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U ) )  /\  y  e.  ( BaseSet `  U ) )  -> 
( ( ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  e.  RR  /\  ( x C y )  e.  RR )  /\  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <_  ( x C y ) ) )
30 rpre 11111 . . . . . . . 8  |-  ( e  e.  RR+  ->  e  e.  RR )
31 lelttr 9579 . . . . . . . . . . 11  |-  ( ( ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  e.  RR  /\  (
x C y )  e.  RR  /\  e  e.  RR )  ->  (
( ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <_  ( x C y )  /\  (
x C y )  <  e )  -> 
( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
32313expa 1188 . . . . . . . . . 10  |-  ( ( ( ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  e.  RR  /\  (
x C y )  e.  RR )  /\  e  e.  RR )  ->  ( ( ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  <_  (
x C y )  /\  ( x C y )  <  e
)  ->  ( ( N `  x )
( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  <  e
) )
3332expdimp 437 . . . . . . . . 9  |-  ( ( ( ( ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  e.  RR  /\  ( x C y )  e.  RR )  /\  e  e.  RR )  /\  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <_  ( x C y ) )  -> 
( ( x C y )  <  e  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
3433an32s 802 . . . . . . . 8  |-  ( ( ( ( ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  e.  RR  /\  ( x C y )  e.  RR )  /\  ( ( N `
 x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <_  ( x C y ) )  /\  e  e.  RR )  ->  ( ( x C y )  <  e  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
3529, 30, 34syl2an 477 . . . . . . 7  |-  ( ( ( ( U  e.  NrmCVec 
/\  x  e.  (
BaseSet `  U ) )  /\  y  e.  (
BaseSet `  U ) )  /\  e  e.  RR+ )  ->  ( ( x C y )  < 
e  ->  ( ( N `  x )
( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( N `  y
) )  <  e
) )
3635ex 434 . . . . . 6  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U ) )  /\  y  e.  ( BaseSet `  U ) )  -> 
( e  e.  RR+  ->  ( ( x C y )  <  e  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) ) )
3736ralrimdva 2912 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  x  e.  ( BaseSet `  U )
)  ->  ( e  e.  RR+  ->  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  e  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) ) )
3837impr 619 . . . 4  |-  ( ( U  e.  NrmCVec  /\  (
x  e.  ( BaseSet `  U )  /\  e  e.  RR+ ) )  ->  A. y  e.  ( BaseSet
`  U ) ( ( x C y )  <  e  -> 
( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
39 breq2 4407 . . . . . . 7  |-  ( d  =  e  ->  (
( x C y )  <  d  <->  ( x C y )  < 
e ) )
4039imbi1d 317 . . . . . 6  |-  ( d  =  e  ->  (
( ( x C y )  <  d  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e )  <->  ( (
x C y )  <  e  ->  (
( N `  x
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( N `  y
) )  <  e
) ) )
4140ralbidv 2846 . . . . 5  |-  ( d  =  e  ->  ( A. y  e.  ( BaseSet
`  U ) ( ( x C y )  <  d  -> 
( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e )  <->  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  e  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) ) )
4241rspcev 3179 . . . 4  |-  ( ( e  e.  RR+  /\  A. y  e.  ( BaseSet `  U ) ( ( x C y )  <  e  ->  (
( N `  x
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( N `  y
) )  <  e
) )  ->  E. d  e.  RR+  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  d  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
434, 38, 42syl2anc 661 . . 3  |-  ( ( U  e.  NrmCVec  /\  (
x  e.  ( BaseSet `  U )  /\  e  e.  RR+ ) )  ->  E. d  e.  RR+  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  d  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
4443ralrimivva 2914 . 2  |-  ( U  e.  NrmCVec  ->  A. x  e.  (
BaseSet `  U ) A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  d  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) )
451, 16imsxmet 24255 . . 3  |-  ( U  e.  NrmCVec  ->  C  e.  ( *Met `  ( BaseSet
`  U ) ) )
4610rexmet 20503 . . 3  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )
47 nmcvcn.j . . . 4  |-  J  =  ( MetOpen `  C )
48 nmcvcn.k . . . . 5  |-  K  =  ( topGen `  ran  (,) )
49 eqid 2454 . . . . . 6  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )
5010, 49tgioo 20508 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) )
5148, 50eqtri 2483 . . . 4  |-  K  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) )
5247, 51metcn 20253 . . 3  |-  ( ( C  e.  ( *Met `  ( BaseSet `  U ) )  /\  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR ) )  -> 
( N  e.  ( J  Cn  K )  <-> 
( N : (
BaseSet `  U ) --> RR 
/\  A. x  e.  (
BaseSet `  U ) A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  d  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) ) ) )
5345, 46, 52sylancl 662 . 2  |-  ( U  e.  NrmCVec  ->  ( N  e.  ( J  Cn  K
)  <->  ( N :
( BaseSet `  U ) --> RR  /\  A. x  e.  ( BaseSet `  U ) A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( BaseSet `  U )
( ( x C y )  <  d  ->  ( ( N `  x ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( N `
 y ) )  <  e ) ) ) )
543, 44, 53mpbir2and 913 1  |-  ( U  e.  NrmCVec  ->  N  e.  ( J  Cn  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2799   E.wrex 2800   class class class wbr 4403    X. cxp 4949   ran crn 4952    |` cres 4953    o. ccom 4955   -->wf 5525   ` cfv 5529  (class class class)co 6203   RRcr 9395   1c1 9397    < clt 9532    <_ cle 9533    - cmin 9709   -ucneg 9710   RR+crp 11105   (,)cioo 11414   abscabs 12844   topGenctg 14498   *Metcxmt 17929   Metcme 17930   MetOpencmopn 17934    Cn ccn 18963   NrmCVeccnv 24134   +vcpv 24135   BaseSetcba 24136   .sOLDcns 24137   normCVcnmcv 24140   IndMetcims 24141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473  ax-pre-sup 9474  ax-addf 9475  ax-mulf 9476
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-er 7214  df-map 7329  df-en 7424  df-dom 7425  df-sdom 7426  df-sup 7805  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-div 10108  df-nn 10437  df-2 10494  df-3 10495  df-n0 10694  df-z 10761  df-uz 10976  df-q 11068  df-rp 11106  df-xneg 11203  df-xadd 11204  df-xmul 11205  df-ioo 11418  df-seq 11927  df-exp 11986  df-cj 12709  df-re 12710  df-im 12711  df-sqr 12845  df-abs 12846  df-topgen 14504  df-psmet 17937  df-xmet 17938  df-met 17939  df-bl 17940  df-mopn 17941  df-top 18638  df-bases 18640  df-topon 18641  df-cn 18966  df-cnp 18967  df-grpo 23850  df-gid 23851  df-ginv 23852  df-gdiv 23853  df-ablo 23941  df-vc 24096  df-nv 24142  df-va 24145  df-ba 24146  df-sm 24147  df-0v 24148  df-vs 24149  df-nmcv 24150  df-ims 24151
This theorem is referenced by:  nmcnc  24263
  Copyright terms: Public domain W3C validator