HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcfnexi Structured version   Unicode version

Theorem nmcfnexi 26674
Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcfnex.1  |-  T  e. 
LinFn
nmcfnex.2  |-  T  e. 
ConFn
Assertion
Ref Expression
nmcfnexi  |-  ( normfn `  T )  e.  RR

Proof of Theorem nmcfnexi
Dummy variables  x  m  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmcfnex.2 . . . 4  |-  T  e. 
ConFn
2 ax-hv0cl 25624 . . . 4  |-  0h  e.  ~H
3 1rp 11224 . . . 4  |-  1  e.  RR+
4 cnfnc 26553 . . . 4  |-  ( ( T  e.  ConFn  /\  0h  e.  ~H  /\  1  e.  RR+ )  ->  E. y  e.  RR+  A. z  e. 
~H  ( ( normh `  ( z  -h  0h ) )  <  y  ->  ( abs `  (
( T `  z
)  -  ( T `
 0h ) ) )  <  1 ) )
51, 2, 3, 4mp3an 1324 . . 3  |-  E. y  e.  RR+  A. z  e. 
~H  ( ( normh `  ( z  -h  0h ) )  <  y  ->  ( abs `  (
( T `  z
)  -  ( T `
 0h ) ) )  <  1 )
6 hvsub0 25697 . . . . . . . 8  |-  ( z  e.  ~H  ->  (
z  -h  0h )  =  z )
76fveq2d 5870 . . . . . . 7  |-  ( z  e.  ~H  ->  ( normh `  ( z  -h 
0h ) )  =  ( normh `  z )
)
87breq1d 4457 . . . . . 6  |-  ( z  e.  ~H  ->  (
( normh `  ( z  -h  0h ) )  < 
y  <->  ( normh `  z
)  <  y )
)
9 nmcfnex.1 . . . . . . . . . . 11  |-  T  e. 
LinFn
109lnfn0i 26665 . . . . . . . . . 10  |-  ( T `
 0h )  =  0
1110oveq2i 6295 . . . . . . . . 9  |-  ( ( T `  z )  -  ( T `  0h ) )  =  ( ( T `  z
)  -  0 )
129lnfnfi 26664 . . . . . . . . . . 11  |-  T : ~H
--> CC
1312ffvelrni 6020 . . . . . . . . . 10  |-  ( z  e.  ~H  ->  ( T `  z )  e.  CC )
1413subid1d 9919 . . . . . . . . 9  |-  ( z  e.  ~H  ->  (
( T `  z
)  -  0 )  =  ( T `  z ) )
1511, 14syl5eq 2520 . . . . . . . 8  |-  ( z  e.  ~H  ->  (
( T `  z
)  -  ( T `
 0h ) )  =  ( T `  z ) )
1615fveq2d 5870 . . . . . . 7  |-  ( z  e.  ~H  ->  ( abs `  ( ( T `
 z )  -  ( T `  0h )
) )  =  ( abs `  ( T `
 z ) ) )
1716breq1d 4457 . . . . . 6  |-  ( z  e.  ~H  ->  (
( abs `  (
( T `  z
)  -  ( T `
 0h ) ) )  <  1  <->  ( abs `  ( T `  z ) )  <  1 ) )
188, 17imbi12d 320 . . . . 5  |-  ( z  e.  ~H  ->  (
( ( normh `  (
z  -h  0h )
)  <  y  ->  ( abs `  ( ( T `  z )  -  ( T `  0h ) ) )  <  1 )  <->  ( ( normh `  z )  < 
y  ->  ( abs `  ( T `  z
) )  <  1
) ) )
1918ralbiia 2894 . . . 4  |-  ( A. z  e.  ~H  (
( normh `  ( z  -h  0h ) )  < 
y  ->  ( abs `  ( ( T `  z )  -  ( T `  0h )
) )  <  1
)  <->  A. z  e.  ~H  ( ( normh `  z
)  <  y  ->  ( abs `  ( T `
 z ) )  <  1 ) )
2019rexbii 2965 . . 3  |-  ( E. y  e.  RR+  A. z  e.  ~H  ( ( normh `  ( z  -h  0h ) )  <  y  ->  ( abs `  (
( T `  z
)  -  ( T `
 0h ) ) )  <  1 )  <->  E. y  e.  RR+  A. z  e.  ~H  ( ( normh `  z )  <  y  ->  ( abs `  ( T `  z )
)  <  1 ) )
215, 20mpbi 208 . 2  |-  E. y  e.  RR+  A. z  e. 
~H  ( ( normh `  z )  <  y  ->  ( abs `  ( T `  z )
)  <  1 )
22 nmfnval 26499 . . 3  |-  ( T : ~H --> CC  ->  (
normfn `  T )  =  sup ( { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( abs `  ( T `  x
) ) ) } ,  RR* ,  <  )
)
2312, 22ax-mp 5 . 2  |-  ( normfn `  T )  =  sup ( { m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( abs `  ( T `  x )
) ) } ,  RR* ,  <  )
2412ffvelrni 6020 . . 3  |-  ( x  e.  ~H  ->  ( T `  x )  e.  CC )
2524abscld 13230 . 2  |-  ( x  e.  ~H  ->  ( abs `  ( T `  x ) )  e.  RR )
2610fveq2i 5869 . . 3  |-  ( abs `  ( T `  0h ) )  =  ( abs `  0 )
27 abs0 13081 . . 3  |-  ( abs `  0 )  =  0
2826, 27eqtri 2496 . 2  |-  ( abs `  ( T `  0h ) )  =  0
29 rpcn 11228 . . . . 5  |-  ( ( y  /  2 )  e.  RR+  ->  ( y  /  2 )  e.  CC )
309lnfnmuli 26667 . . . . 5  |-  ( ( ( y  /  2
)  e.  CC  /\  x  e.  ~H )  ->  ( T `  (
( y  /  2
)  .h  x ) )  =  ( ( y  /  2 )  x.  ( T `  x ) ) )
3129, 30sylan 471 . . . 4  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  ( T `  ( (
y  /  2 )  .h  x ) )  =  ( ( y  /  2 )  x.  ( T `  x
) ) )
3231fveq2d 5870 . . 3  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  ( abs `  ( T `  ( ( y  / 
2 )  .h  x
) ) )  =  ( abs `  (
( y  /  2
)  x.  ( T `
 x ) ) ) )
33 absmul 13090 . . . 4  |-  ( ( ( y  /  2
)  e.  CC  /\  ( T `  x )  e.  CC )  -> 
( abs `  (
( y  /  2
)  x.  ( T `
 x ) ) )  =  ( ( abs `  ( y  /  2 ) )  x.  ( abs `  ( T `  x )
) ) )
3429, 24, 33syl2an 477 . . 3  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  ( abs `  ( ( y  /  2 )  x.  ( T `  x
) ) )  =  ( ( abs `  (
y  /  2 ) )  x.  ( abs `  ( T `  x
) ) ) )
35 rpre 11226 . . . . . 6  |-  ( ( y  /  2 )  e.  RR+  ->  ( y  /  2 )  e.  RR )
36 rpge0 11232 . . . . . 6  |-  ( ( y  /  2 )  e.  RR+  ->  0  <_ 
( y  /  2
) )
3735, 36absidd 13217 . . . . 5  |-  ( ( y  /  2 )  e.  RR+  ->  ( abs `  ( y  /  2
) )  =  ( y  /  2 ) )
3837adantr 465 . . . 4  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  ( abs `  ( y  / 
2 ) )  =  ( y  /  2
) )
3938oveq1d 6299 . . 3  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  (
( abs `  (
y  /  2 ) )  x.  ( abs `  ( T `  x
) ) )  =  ( ( y  / 
2 )  x.  ( abs `  ( T `  x ) ) ) )
4032, 34, 393eqtrrd 2513 . 2  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  (
( y  /  2
)  x.  ( abs `  ( T `  x
) ) )  =  ( abs `  ( T `  ( (
y  /  2 )  .h  x ) ) ) )
4121, 23, 25, 28, 40nmcexi 26649 1  |-  ( normfn `  T )  e.  RR
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   {cab 2452   A.wral 2814   E.wrex 2815   class class class wbr 4447   -->wf 5584   ` cfv 5588  (class class class)co 6284   supcsup 7900   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    x. cmul 9497   RR*cxr 9627    < clt 9628    <_ cle 9629    - cmin 9805    / cdiv 10206   2c2 10585   RR+crp 11220   abscabs 13030   ~Hchil 25540    .h csm 25542   normhcno 25544   0hc0v 25545    -h cmv 25546   normfncnmf 25572   ConFnccnfn 25574   LinFnclf 25575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-hilex 25620  ax-hv0cl 25624  ax-hvaddid 25625  ax-hfvmul 25626  ax-hvmulid 25627  ax-hvmulass 25628  ax-hvmul0 25631  ax-hfi 25700  ax-his1 25703  ax-his3 25705  ax-his4 25706
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-rp 11221  df-seq 12076  df-exp 12135  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-hnorm 25589  df-hvsub 25592  df-nmfn 26468  df-cnfn 26470  df-lnfn 26471
This theorem is referenced by:  nmcfnlbi  26675  nmcfnex  26676
  Copyright terms: Public domain W3C validator