HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcexi Structured version   Unicode version

Theorem nmcexi 27072
Description: Lemma for nmcopexi 27073 and nmcfnexi 27097. The norm of a continuous linear Hilbert space operator or functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by Mario Carneiro, 17-Nov-2013.) (Proof shortened by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcex.1  |-  E. y  e.  RR+  A. z  e. 
~H  ( ( normh `  z )  <  y  ->  ( N `  ( T `  z )
)  <  1 )
nmcex.2  |-  ( S `
 T )  =  sup ( { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) } ,  RR* ,  <  )
nmcex.3  |-  ( x  e.  ~H  ->  ( N `  ( T `  x ) )  e.  RR )
nmcex.4  |-  ( N `
 ( T `  0h ) )  =  0
nmcex.5  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  (
( y  /  2
)  x.  ( N `
 ( T `  x ) ) )  =  ( N `  ( T `  ( ( y  /  2 )  .h  x ) ) ) )
Assertion
Ref Expression
nmcexi  |-  ( S `
 T )  e.  RR
Distinct variable groups:    x, m, y, z, N    T, m, x, y, z
Allowed substitution hints:    S( x, y, z, m)

Proof of Theorem nmcexi
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nmcex.2 . . 3  |-  ( S `
 T )  =  sup ( { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) } ,  RR* ,  <  )
2 nmcex.3 . . . . . . . . 9  |-  ( x  e.  ~H  ->  ( N `  ( T `  x ) )  e.  RR )
3 eleq1 2529 . . . . . . . . 9  |-  ( m  =  ( N `  ( T `  x ) )  ->  ( m  e.  RR  <->  ( N `  ( T `  x ) )  e.  RR ) )
42, 3syl5ibrcom 222 . . . . . . . 8  |-  ( x  e.  ~H  ->  (
m  =  ( N `
 ( T `  x ) )  ->  m  e.  RR )
)
54imp 429 . . . . . . 7  |-  ( ( x  e.  ~H  /\  m  =  ( N `  ( T `  x
) ) )  ->  m  e.  RR )
65adantrl 715 . . . . . 6  |-  ( ( x  e.  ~H  /\  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) )  ->  m  e.  RR )
76rexlimiva 2945 . . . . 5  |-  ( E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) )  ->  m  e.  RR )
87abssi 3571 . . . 4  |-  { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) } 
C_  RR
9 ax-hv0cl 26047 . . . . . . 7  |-  0h  e.  ~H
10 norm0 26172 . . . . . . . . 9  |-  ( normh `  0h )  =  0
11 0le1 10097 . . . . . . . . 9  |-  0  <_  1
1210, 11eqbrtri 4475 . . . . . . . 8  |-  ( normh `  0h )  <_  1
13 nmcex.4 . . . . . . . . 9  |-  ( N `
 ( T `  0h ) )  =  0
1413eqcomi 2470 . . . . . . . 8  |-  0  =  ( N `  ( T `  0h )
)
1512, 14pm3.2i 455 . . . . . . 7  |-  ( (
normh `  0h )  <_ 
1  /\  0  =  ( N `  ( T `
 0h ) ) )
16 fveq2 5872 . . . . . . . . . 10  |-  ( x  =  0h  ->  ( normh `  x )  =  ( normh `  0h )
)
1716breq1d 4466 . . . . . . . . 9  |-  ( x  =  0h  ->  (
( normh `  x )  <_  1  <->  ( normh `  0h )  <_  1 ) )
18 fveq2 5872 . . . . . . . . . . 11  |-  ( x  =  0h  ->  ( T `  x )  =  ( T `  0h ) )
1918fveq2d 5876 . . . . . . . . . 10  |-  ( x  =  0h  ->  ( N `  ( T `  x ) )  =  ( N `  ( T `  0h )
) )
2019eqeq2d 2471 . . . . . . . . 9  |-  ( x  =  0h  ->  (
0  =  ( N `
 ( T `  x ) )  <->  0  =  ( N `  ( T `
 0h ) ) ) )
2117, 20anbi12d 710 . . . . . . . 8  |-  ( x  =  0h  ->  (
( ( normh `  x
)  <_  1  /\  0  =  ( N `  ( T `  x
) ) )  <->  ( ( normh `  0h )  <_ 
1  /\  0  =  ( N `  ( T `
 0h ) ) ) ) )
2221rspcev 3210 . . . . . . 7  |-  ( ( 0h  e.  ~H  /\  ( ( normh `  0h )  <_  1  /\  0  =  ( N `  ( T `  0h )
) ) )  ->  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  0  =  ( N `  ( T `  x
) ) ) )
239, 15, 22mp2an 672 . . . . . 6  |-  E. x  e.  ~H  ( ( normh `  x )  <_  1  /\  0  =  ( N `  ( T `  x ) ) )
24 c0ex 9607 . . . . . . 7  |-  0  e.  _V
25 eqeq1 2461 . . . . . . . . 9  |-  ( m  =  0  ->  (
m  =  ( N `
 ( T `  x ) )  <->  0  =  ( N `  ( T `
 x ) ) ) )
2625anbi2d 703 . . . . . . . 8  |-  ( m  =  0  ->  (
( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) )  <->  ( ( normh `  x )  <_ 
1  /\  0  =  ( N `  ( T `
 x ) ) ) ) )
2726rexbidv 2968 . . . . . . 7  |-  ( m  =  0  ->  ( E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) )  <->  E. x  e.  ~H  ( ( normh `  x )  <_  1  /\  0  =  ( N `  ( T `  x ) ) ) ) )
2824, 27elab 3246 . . . . . 6  |-  ( 0  e.  { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) }  <->  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  0  =  ( N `  ( T `  x
) ) ) )
2923, 28mpbir 209 . . . . 5  |-  0  e.  { m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) }
3029ne0ii 3800 . . . 4  |-  { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) }  =/=  (/)
31 nmcex.1 . . . . 5  |-  E. y  e.  RR+  A. z  e. 
~H  ( ( normh `  z )  <  y  ->  ( N `  ( T `  z )
)  <  1 )
32 2rp 11250 . . . . . . . . . 10  |-  2  e.  RR+
33 rpdivcl 11267 . . . . . . . . . 10  |-  ( ( 2  e.  RR+  /\  y  e.  RR+ )  ->  (
2  /  y )  e.  RR+ )
3432, 33mpan 670 . . . . . . . . 9  |-  ( y  e.  RR+  ->  ( 2  /  y )  e.  RR+ )
3534rpred 11281 . . . . . . . 8  |-  ( y  e.  RR+  ->  ( 2  /  y )  e.  RR )
3635adantr 465 . . . . . . 7  |-  ( ( y  e.  RR+  /\  A. z  e.  ~H  (
( normh `  z )  <  y  ->  ( N `  ( T `  z
) )  <  1
) )  ->  (
2  /  y )  e.  RR )
37 rpre 11251 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  RR+  ->  y  e.  RR )
3837adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
y  e.  RR )
3938rehalfcld 10806 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( y  /  2
)  e.  RR )
4039recnd 9639 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( y  /  2
)  e.  CC )
41 simprl 756 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  ->  x  e.  ~H )
42 hvmulcl 26057 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  /  2
)  e.  CC  /\  x  e.  ~H )  ->  ( ( y  / 
2 )  .h  x
)  e.  ~H )
4340, 41, 42syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( y  / 
2 )  .h  x
)  e.  ~H )
44 normcl 26169 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  /  2
)  .h  x )  e.  ~H  ->  ( normh `  ( ( y  /  2 )  .h  x ) )  e.  RR )
4543, 44syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( (
y  /  2 )  .h  x ) )  e.  RR )
46 simprr 757 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  x )  <_  1 )
47 normcl 26169 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ~H  ->  ( normh `  x )  e.  RR )
4847ad2antrl 727 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  x )  e.  RR )
49 1red 9628 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
1  e.  RR )
50 rphalfcl 11269 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  RR+  ->  ( y  /  2 )  e.  RR+ )
5150adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( y  /  2
)  e.  RR+ )
5248, 49, 51lemul2d 11321 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( normh `  x
)  <_  1  <->  ( (
y  /  2 )  x.  ( normh `  x
) )  <_  (
( y  /  2
)  x.  1 ) ) )
5346, 52mpbid 210 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( y  / 
2 )  x.  ( normh `  x ) )  <_  ( ( y  /  2 )  x.  1 ) )
54 rpcn 11253 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  /  2 )  e.  RR+  ->  ( y  /  2 )  e.  CC )
55 norm-iii 26184 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( y  /  2
)  e.  CC  /\  x  e.  ~H )  ->  ( normh `  ( (
y  /  2 )  .h  x ) )  =  ( ( abs `  ( y  /  2
) )  x.  ( normh `  x ) ) )
5654, 55sylan 471 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  ( normh `  ( ( y  /  2 )  .h  x ) )  =  ( ( abs `  (
y  /  2 ) )  x.  ( normh `  x ) ) )
57 rpre 11251 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  /  2 )  e.  RR+  ->  ( y  /  2 )  e.  RR )
58 rpge0 11257 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  /  2 )  e.  RR+  ->  0  <_ 
( y  /  2
) )
5957, 58absidd 13266 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  /  2 )  e.  RR+  ->  ( abs `  ( y  /  2
) )  =  ( y  /  2 ) )
6059oveq1d 6311 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  /  2 )  e.  RR+  ->  ( ( abs `  ( y  /  2 ) )  x.  ( normh `  x
) )  =  ( ( y  /  2
)  x.  ( normh `  x ) ) )
6160adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  (
( abs `  (
y  /  2 ) )  x.  ( normh `  x ) )  =  ( ( y  / 
2 )  x.  ( normh `  x ) ) )
6256, 61eqtr2d 2499 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  (
( y  /  2
)  x.  ( normh `  x ) )  =  ( normh `  ( (
y  /  2 )  .h  x ) ) )
6351, 41, 62syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( y  / 
2 )  x.  ( normh `  x ) )  =  ( normh `  (
( y  /  2
)  .h  x ) ) )
6440mulid1d 9630 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( y  / 
2 )  x.  1 )  =  ( y  /  2 ) )
6553, 63, 643brtr3d 4485 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( (
y  /  2 )  .h  x ) )  <_  ( y  / 
2 ) )
66 rphalflt 11271 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  RR+  ->  ( y  /  2 )  < 
y )
6766adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( y  /  2
)  <  y )
6845, 39, 38, 65, 67lelttrd 9757 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( normh `  ( (
y  /  2 )  .h  x ) )  <  y )
69 fveq2 5872 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( ( y  /  2 )  .h  x )  ->  ( normh `  z )  =  ( normh `  ( (
y  /  2 )  .h  x ) ) )
7069breq1d 4466 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( ( y  /  2 )  .h  x )  ->  (
( normh `  z )  <  y  <->  ( normh `  (
( y  /  2
)  .h  x ) )  <  y ) )
71 fveq2 5872 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  ( ( y  /  2 )  .h  x )  ->  ( T `  z )  =  ( T `  ( ( y  / 
2 )  .h  x
) ) )
7271fveq2d 5876 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( ( y  /  2 )  .h  x )  ->  ( N `  ( T `  z ) )  =  ( N `  ( T `  ( (
y  /  2 )  .h  x ) ) ) )
7372breq1d 4466 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( ( y  /  2 )  .h  x )  ->  (
( N `  ( T `  z )
)  <  1  <->  ( N `  ( T `  (
( y  /  2
)  .h  x ) ) )  <  1
) )
7470, 73imbi12d 320 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( ( y  /  2 )  .h  x )  ->  (
( ( normh `  z
)  <  y  ->  ( N `  ( T `
 z ) )  <  1 )  <->  ( ( normh `  ( ( y  /  2 )  .h  x ) )  < 
y  ->  ( N `  ( T `  (
( y  /  2
)  .h  x ) ) )  <  1
) ) )
7574rspcv 3206 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  /  2
)  .h  x )  e.  ~H  ->  ( A. z  e.  ~H  ( ( normh `  z
)  <  y  ->  ( N `  ( T `
 z ) )  <  1 )  -> 
( ( normh `  (
( y  /  2
)  .h  x ) )  <  y  -> 
( N `  ( T `  ( (
y  /  2 )  .h  x ) ) )  <  1 ) ) )
7643, 75syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( A. z  e. 
~H  ( ( normh `  z )  <  y  ->  ( N `  ( T `  z )
)  <  1 )  ->  ( ( normh `  ( ( y  / 
2 )  .h  x
) )  <  y  ->  ( N `  ( T `  ( (
y  /  2 )  .h  x ) ) )  <  1 ) ) )
7768, 76mpid 41 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( A. z  e. 
~H  ( ( normh `  z )  <  y  ->  ( N `  ( T `  z )
)  <  1 )  ->  ( N `  ( T `  ( ( y  /  2 )  .h  x ) ) )  <  1 ) )
782ad2antrl 727 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( N `  ( T `  x )
)  e.  RR )
7978, 49, 51ltmuldiv2d 11325 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( ( y  /  2 )  x.  ( N `  ( T `  x )
) )  <  1  <->  ( N `  ( T `
 x ) )  <  ( 1  / 
( y  /  2
) ) ) )
8051rprecred 11292 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( 1  /  (
y  /  2 ) )  e.  RR )
81 ltle 9690 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N `  ( T `  x )
)  e.  RR  /\  ( 1  /  (
y  /  2 ) )  e.  RR )  ->  ( ( N `
 ( T `  x ) )  < 
( 1  /  (
y  /  2 ) )  ->  ( N `  ( T `  x
) )  <_  (
1  /  ( y  /  2 ) ) ) )
8278, 80, 81syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( N `  ( T `  x ) )  <  ( 1  /  ( y  / 
2 ) )  -> 
( N `  ( T `  x )
)  <_  ( 1  /  ( y  / 
2 ) ) ) )
8379, 82sylbid 215 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( ( y  /  2 )  x.  ( N `  ( T `  x )
) )  <  1  ->  ( N `  ( T `  x )
)  <_  ( 1  /  ( y  / 
2 ) ) ) )
84 nmcex.5 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  /  2
)  e.  RR+  /\  x  e.  ~H )  ->  (
( y  /  2
)  x.  ( N `
 ( T `  x ) ) )  =  ( N `  ( T `  ( ( y  /  2 )  .h  x ) ) ) )
8551, 41, 84syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( y  / 
2 )  x.  ( N `  ( T `  x ) ) )  =  ( N `  ( T `  ( ( y  /  2 )  .h  x ) ) ) )
8685breq1d 4466 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( ( y  /  2 )  x.  ( N `  ( T `  x )
) )  <  1  <->  ( N `  ( T `
 ( ( y  /  2 )  .h  x ) ) )  <  1 ) )
87 rpcn 11253 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  RR+  ->  y  e.  CC )
88 rpne0 11260 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  RR+  ->  y  =/=  0 )
89 2cn 10627 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  CC
90 2ne0 10649 . . . . . . . . . . . . . . . . . . . 20  |-  2  =/=  0
91 recdiv 10271 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  CC  /\  y  =/=  0 )  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  -> 
( 1  /  (
y  /  2 ) )  =  ( 2  /  y ) )
9289, 90, 91mpanr12 685 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  CC  /\  y  =/=  0 )  -> 
( 1  /  (
y  /  2 ) )  =  ( 2  /  y ) )
9387, 88, 92syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  RR+  ->  ( 1  /  ( y  / 
2 ) )  =  ( 2  /  y
) )
9493adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( 1  /  (
y  /  2 ) )  =  ( 2  /  y ) )
9594breq2d 4468 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( N `  ( T `  x ) )  <_  ( 1  /  ( y  / 
2 ) )  <->  ( N `  ( T `  x
) )  <_  (
2  /  y ) ) )
9683, 86, 953imtr3d 267 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( ( N `  ( T `  ( ( y  /  2 )  .h  x ) ) )  <  1  -> 
( N `  ( T `  x )
)  <_  ( 2  /  y ) ) )
9777, 96syld 44 . . . . . . . . . . . . . 14  |-  ( ( y  e.  RR+  /\  (
x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  -> 
( A. z  e. 
~H  ( ( normh `  z )  <  y  ->  ( N `  ( T `  z )
)  <  1 )  ->  ( N `  ( T `  x ) )  <_  ( 2  /  y ) ) )
9897imp 429 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  RR+  /\  ( x  e.  ~H  /\  ( normh `  x )  <_  1 ) )  /\  A. z  e.  ~H  (
( normh `  z )  <  y  ->  ( N `  ( T `  z
) )  <  1
) )  ->  ( N `  ( T `  x ) )  <_ 
( 2  /  y
) )
9998an32s 804 . . . . . . . . . . . 12  |-  ( ( ( y  e.  RR+  /\ 
A. z  e.  ~H  ( ( normh `  z
)  <  y  ->  ( N `  ( T `
 z ) )  <  1 ) )  /\  ( x  e. 
~H  /\  ( normh `  x )  <_  1
) )  ->  ( N `  ( T `  x ) )  <_ 
( 2  /  y
) )
10099anassrs 648 . . . . . . . . . . 11  |-  ( ( ( ( y  e.  RR+  /\  A. z  e. 
~H  ( ( normh `  z )  <  y  ->  ( N `  ( T `  z )
)  <  1 ) )  /\  x  e. 
~H )  /\  ( normh `  x )  <_ 
1 )  ->  ( N `  ( T `  x ) )  <_ 
( 2  /  y
) )
101 breq1 4459 . . . . . . . . . . 11  |-  ( n  =  ( N `  ( T `  x ) )  ->  ( n  <_  ( 2  /  y
)  <->  ( N `  ( T `  x ) )  <_  ( 2  /  y ) ) )
102100, 101syl5ibrcom 222 . . . . . . . . . 10  |-  ( ( ( ( y  e.  RR+  /\  A. z  e. 
~H  ( ( normh `  z )  <  y  ->  ( N `  ( T `  z )
)  <  1 ) )  /\  x  e. 
~H )  /\  ( normh `  x )  <_ 
1 )  ->  (
n  =  ( N `
 ( T `  x ) )  ->  n  <_  ( 2  / 
y ) ) )
103102expimpd 603 . . . . . . . . 9  |-  ( ( ( y  e.  RR+  /\ 
A. z  e.  ~H  ( ( normh `  z
)  <  y  ->  ( N `  ( T `
 z ) )  <  1 ) )  /\  x  e.  ~H )  ->  ( ( (
normh `  x )  <_ 
1  /\  n  =  ( N `  ( T `
 x ) ) )  ->  n  <_  ( 2  /  y ) ) )
104103rexlimdva 2949 . . . . . . . 8  |-  ( ( y  e.  RR+  /\  A. z  e.  ~H  (
( normh `  z )  <  y  ->  ( N `  ( T `  z
) )  <  1
) )  ->  ( E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  n  =  ( N `  ( T `  x
) ) )  ->  n  <_  ( 2  / 
y ) ) )
105104alrimiv 1720 . . . . . . 7  |-  ( ( y  e.  RR+  /\  A. z  e.  ~H  (
( normh `  z )  <  y  ->  ( N `  ( T `  z
) )  <  1
) )  ->  A. n
( E. x  e. 
~H  ( ( normh `  x )  <_  1  /\  n  =  ( N `  ( T `  x ) ) )  ->  n  <_  (
2  /  y ) ) )
106 eqeq1 2461 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
m  =  ( N `
 ( T `  x ) )  <->  n  =  ( N `  ( T `
 x ) ) ) )
107106anbi2d 703 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) )  <->  ( ( normh `  x )  <_ 
1  /\  n  =  ( N `  ( T `
 x ) ) ) ) )
108107rexbidv 2968 . . . . . . . . . 10  |-  ( m  =  n  ->  ( E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) )  <->  E. x  e.  ~H  ( ( normh `  x )  <_  1  /\  n  =  ( N `  ( T `  x ) ) ) ) )
109108ralab 3260 . . . . . . . . 9  |-  ( A. n  e.  { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) } n  <_  z  <->  A. n
( E. x  e. 
~H  ( ( normh `  x )  <_  1  /\  n  =  ( N `  ( T `  x ) ) )  ->  n  <_  z
) )
110 breq2 4460 . . . . . . . . . . 11  |-  ( z  =  ( 2  / 
y )  ->  (
n  <_  z  <->  n  <_  ( 2  /  y ) ) )
111110imbi2d 316 . . . . . . . . . 10  |-  ( z  =  ( 2  / 
y )  ->  (
( E. x  e. 
~H  ( ( normh `  x )  <_  1  /\  n  =  ( N `  ( T `  x ) ) )  ->  n  <_  z
)  <->  ( E. x  e.  ~H  ( ( normh `  x )  <_  1  /\  n  =  ( N `  ( T `  x ) ) )  ->  n  <_  (
2  /  y ) ) ) )
112111albidv 1714 . . . . . . . . 9  |-  ( z  =  ( 2  / 
y )  ->  ( A. n ( E. x  e.  ~H  ( ( normh `  x )  <_  1  /\  n  =  ( N `  ( T `  x ) ) )  ->  n  <_  z
)  <->  A. n ( E. x  e.  ~H  (
( normh `  x )  <_  1  /\  n  =  ( N `  ( T `  x )
) )  ->  n  <_  ( 2  /  y
) ) ) )
113109, 112syl5bb 257 . . . . . . . 8  |-  ( z  =  ( 2  / 
y )  ->  ( A. n  e.  { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) } n  <_  z  <->  A. n
( E. x  e. 
~H  ( ( normh `  x )  <_  1  /\  n  =  ( N `  ( T `  x ) ) )  ->  n  <_  (
2  /  y ) ) ) )
114113rspcev 3210 . . . . . . 7  |-  ( ( ( 2  /  y
)  e.  RR  /\  A. n ( E. x  e.  ~H  ( ( normh `  x )  <_  1  /\  n  =  ( N `  ( T `  x ) ) )  ->  n  <_  (
2  /  y ) ) )  ->  E. z  e.  RR  A. n  e. 
{ m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) } n  <_  z )
11536, 105, 114syl2anc 661 . . . . . 6  |-  ( ( y  e.  RR+  /\  A. z  e.  ~H  (
( normh `  z )  <  y  ->  ( N `  ( T `  z
) )  <  1
) )  ->  E. z  e.  RR  A. n  e. 
{ m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) } n  <_  z )
116115rexlimiva 2945 . . . . 5  |-  ( E. y  e.  RR+  A. z  e.  ~H  ( ( normh `  z )  <  y  ->  ( N `  ( T `  z )
)  <  1 )  ->  E. z  e.  RR  A. n  e.  { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) } n  <_  z )
11731, 116ax-mp 5 . . . 4  |-  E. z  e.  RR  A. n  e. 
{ m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) } n  <_  z
118 supxrre 11544 . . . 4  |-  ( ( { m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) }  C_  RR  /\  { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) }  =/=  (/)  /\  E. z  e.  RR  A. n  e. 
{ m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) } n  <_  z )  ->  sup ( { m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) } ,  RR* ,  <  )  =  sup ( { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) } ,  RR ,  <  ) )
1198, 30, 117, 118mp3an 1324 . . 3  |-  sup ( { m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) } ,  RR* ,  <  )  =  sup ( { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) } ,  RR ,  <  )
1201, 119eqtri 2486 . 2  |-  ( S `
 T )  =  sup ( { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) } ,  RR ,  <  )
121 suprcl 10523 . . 3  |-  ( ( { m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) }  C_  RR  /\  { m  |  E. x  e.  ~H  ( ( normh `  x
)  <_  1  /\  m  =  ( N `  ( T `  x
) ) ) }  =/=  (/)  /\  E. z  e.  RR  A. n  e. 
{ m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) } n  <_  z )  ->  sup ( { m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) } ,  RR ,  <  )  e.  RR )
1228, 30, 117, 121mp3an 1324 . 2  |-  sup ( { m  |  E. x  e.  ~H  (
( normh `  x )  <_  1  /\  m  =  ( N `  ( T `  x )
) ) } ,  RR ,  <  )  e.  RR
123120, 122eqeltri 2541 1  |-  ( S `
 T )  e.  RR
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1393    = wceq 1395    e. wcel 1819   {cab 2442    =/= wne 2652   A.wral 2807   E.wrex 2808    C_ wss 3471   (/)c0 3793   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   supcsup 7918   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510    x. cmul 9514   RR*cxr 9644    < clt 9645    <_ cle 9646    / cdiv 10227   2c2 10606   RR+crp 11245   abscabs 13079   ~Hchil 25963    .h csm 25965   normhcno 25967   0hc0v 25968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-hv0cl 26047  ax-hfvmul 26049  ax-hvmul0 26054  ax-hfi 26123  ax-his1 26126  ax-his3 26128  ax-his4 26129
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-seq 12111  df-exp 12170  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-hnorm 26012
This theorem is referenced by:  nmcopexi  27073  nmcfnexi  27097
  Copyright terms: Public domain W3C validator