HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmbdoplbi Structured version   Unicode version

Theorem nmbdoplbi 27144
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmbdoplb.1  |-  T  e.  BndLinOp
Assertion
Ref Expression
nmbdoplbi  |-  ( A  e.  ~H  ->  ( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )

Proof of Theorem nmbdoplbi
StepHypRef Expression
1 fveq2 5848 . . . 4  |-  ( A  =  0h  ->  ( T `  A )  =  ( T `  0h ) )
21fveq2d 5852 . . 3  |-  ( A  =  0h  ->  ( normh `  ( T `  A ) )  =  ( normh `  ( T `  0h ) ) )
3 fveq2 5848 . . . 4  |-  ( A  =  0h  ->  ( normh `  A )  =  ( normh `  0h )
)
43oveq2d 6286 . . 3  |-  ( A  =  0h  ->  (
( normop `  T )  x.  ( normh `  A )
)  =  ( (
normop `  T )  x.  ( normh `  0h )
) )
52, 4breq12d 4452 . 2  |-  ( A  =  0h  ->  (
( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) )  <->  ( normh `  ( T `  0h ) )  <_  (
( normop `  T )  x.  ( normh `  0h )
) ) )
6 nmbdoplb.1 . . . . . . . . . . . 12  |-  T  e.  BndLinOp
7 bdopln 26981 . . . . . . . . . . . 12  |-  ( T  e.  BndLinOp  ->  T  e.  LinOp )
86, 7ax-mp 5 . . . . . . . . . . 11  |-  T  e. 
LinOp
98lnopfi 27089 . . . . . . . . . 10  |-  T : ~H
--> ~H
109ffvelrni 6006 . . . . . . . . 9  |-  ( A  e.  ~H  ->  ( T `  A )  e.  ~H )
11 normcl 26243 . . . . . . . . 9  |-  ( ( T `  A )  e.  ~H  ->  ( normh `  ( T `  A ) )  e.  RR )
1210, 11syl 16 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( normh `  ( T `  A ) )  e.  RR )
1312adantr 463 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  A ) )  e.  RR )
1413recnd 9611 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  A ) )  e.  CC )
15 normcl 26243 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( normh `  A )  e.  RR )
1615adantr 463 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  RR )
1716recnd 9611 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  CC )
18 normne0 26248 . . . . . . 7  |-  ( A  e.  ~H  ->  (
( normh `  A )  =/=  0  <->  A  =/=  0h )
)
1918biimpar 483 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  =/=  0 )
2014, 17, 19divrec2d 10320 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  ( T `  A )
)  /  ( normh `  A ) )  =  ( ( 1  / 
( normh `  A )
)  x.  ( normh `  ( T `  A
) ) ) )
2116, 19rereccld 10367 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  RR )
2221recnd 9611 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  CC )
23 simpl 455 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  A  e.  ~H )
248lnopmuli 27092 . . . . . . . 8  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  ( ( 1  / 
( normh `  A )
)  .h  ( T `
 A ) ) )
2522, 23, 24syl2anc 659 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( T `  (
( 1  /  ( normh `  A ) )  .h  A ) )  =  ( ( 1  /  ( normh `  A
) )  .h  ( T `  A )
) )
2625fveq2d 5852 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) )  =  (
normh `  ( ( 1  /  ( normh `  A
) )  .h  ( T `  A )
) ) )
2710adantr 463 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( T `  A
)  e.  ~H )
28 norm-iii 26258 . . . . . . 7  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  ( T `  A )  e.  ~H )  ->  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  ( T `  A )
) )  =  ( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( normh `  ( T `  A )
) ) )
2922, 27, 28syl2anc 659 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  ( T `  A
) ) )  =  ( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( normh `  ( T `  A )
) ) )
30 normgt0 26245 . . . . . . . . . . 11  |-  ( A  e.  ~H  ->  ( A  =/=  0h  <->  0  <  (
normh `  A ) ) )
3130biimpa 482 . . . . . . . . . 10  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( normh `  A ) )
3216, 31recgt0d 10475 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( 1  /  ( normh `  A
) ) )
33 0re 9585 . . . . . . . . . 10  |-  0  e.  RR
34 ltle 9662 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( 1  /  ( normh `  A ) )  e.  RR )  -> 
( 0  <  (
1  /  ( normh `  A ) )  -> 
0  <_  ( 1  /  ( normh `  A
) ) ) )
3533, 34mpan 668 . . . . . . . . 9  |-  ( ( 1  /  ( normh `  A ) )  e.  RR  ->  ( 0  <  ( 1  / 
( normh `  A )
)  ->  0  <_  ( 1  /  ( normh `  A ) ) ) )
3621, 32, 35sylc 60 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <_  ( 1  /  ( normh `  A
) ) )
3721, 36absidd 13339 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  (
1  /  ( normh `  A ) ) )  =  ( 1  / 
( normh `  A )
) )
3837oveq1d 6285 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( normh `  ( T `  A )
) )  =  ( ( 1  /  ( normh `  A ) )  x.  ( normh `  ( T `  A )
) ) )
3926, 29, 383eqtrrd 2500 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  x.  ( normh `  ( T `  A
) ) )  =  ( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) ) )
4020, 39eqtrd 2495 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  ( T `  A )
)  /  ( normh `  A ) )  =  ( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) ) )
41 hvmulcl 26131 . . . . . 6  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  (
( 1  /  ( normh `  A ) )  .h  A )  e. 
~H )
4222, 23, 41syl2anc 659 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H )
43 normcl 26243 . . . . . . 7  |-  ( ( ( 1  /  ( normh `  A ) )  .h  A )  e. 
~H  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  e.  RR )
4442, 43syl 16 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  e.  RR )
45 norm1 26368 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  1 )
46 eqle 9676 . . . . . 6  |-  ( ( ( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  e.  RR  /\  ( normh `  ( ( 1  / 
( normh `  A )
)  .h  A ) )  =  1 )  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  <_  1 )
4744, 45, 46syl2anc 659 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  <_ 
1 )
48 nmoplb 27027 . . . . . 6  |-  ( ( T : ~H --> ~H  /\  ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) )  <_  1
)  ->  ( normh `  ( T `  (
( 1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normop `  T
) )
499, 48mp3an1 1309 . . . . 5  |-  ( ( ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) )  <_  1
)  ->  ( normh `  ( T `  (
( 1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normop `  T
) )
5042, 47, 49syl2anc 659 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  ( ( 1  / 
( normh `  A )
)  .h  A ) ) )  <_  ( normop `  T ) )
5140, 50eqbrtrd 4459 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  ( T `  A )
)  /  ( normh `  A ) )  <_ 
( normop `  T )
)
52 nmopre 26990 . . . . . 6  |-  ( T  e.  BndLinOp  ->  ( normop `  T
)  e.  RR )
536, 52ax-mp 5 . . . . 5  |-  ( normop `  T )  e.  RR
5453a1i 11 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normop `  T )  e.  RR )
55 ledivmul2 10417 . . . 4  |-  ( ( ( normh `  ( T `  A ) )  e.  RR  /\  ( normop `  T )  e.  RR  /\  ( ( normh `  A
)  e.  RR  /\  0  <  ( normh `  A
) ) )  -> 
( ( ( normh `  ( T `  A
) )  /  ( normh `  A ) )  <_  ( normop `  T
)  <->  ( normh `  ( T `  A )
)  <_  ( ( normop `  T )  x.  ( normh `  A ) ) ) )
5613, 54, 16, 31, 55syl112anc 1230 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( ( normh `  ( T `  A
) )  /  ( normh `  A ) )  <_  ( normop `  T
)  <->  ( normh `  ( T `  A )
)  <_  ( ( normop `  T )  x.  ( normh `  A ) ) ) )
5751, 56mpbid 210 . 2  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
58 0le0 10621 . . . 4  |-  0  <_  0
598lnop0i 27090 . . . . . 6  |-  ( T `
 0h )  =  0h
6059fveq2i 5851 . . . . 5  |-  ( normh `  ( T `  0h ) )  =  (
normh `  0h )
61 norm0 26246 . . . . 5  |-  ( normh `  0h )  =  0
6260, 61eqtri 2483 . . . 4  |-  ( normh `  ( T `  0h ) )  =  0
6361oveq2i 6281 . . . . 5  |-  ( (
normop `  T )  x.  ( normh `  0h )
)  =  ( (
normop `  T )  x.  0 )
6453recni 9597 . . . . . 6  |-  ( normop `  T )  e.  CC
6564mul01i 9759 . . . . 5  |-  ( (
normop `  T )  x.  0 )  =  0
6663, 65eqtri 2483 . . . 4  |-  ( (
normop `  T )  x.  ( normh `  0h )
)  =  0
6758, 62, 663brtr4i 4467 . . 3  |-  ( normh `  ( T `  0h ) )  <_  (
( normop `  T )  x.  ( normh `  0h )
)
6867a1i 11 . 2  |-  ( A  e.  ~H  ->  ( normh `  ( T `  0h ) )  <_  (
( normop `  T )  x.  ( normh `  0h )
) )
695, 57, 68pm2.61ne 2769 1  |-  ( A  e.  ~H  ->  ( normh `  ( T `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   class class class wbr 4439   -->wf 5566   ` cfv 5570  (class class class)co 6270   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    x. cmul 9486    < clt 9617    <_ cle 9618    / cdiv 10202   abscabs 13152   ~Hchil 26037    .h csm 26039   normhcno 26041   0hc0v 26042   normopcnop 26063   LinOpclo 26065   BndLinOpcbo 26066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-hilex 26117  ax-hfvadd 26118  ax-hvcom 26119  ax-hvass 26120  ax-hv0cl 26121  ax-hvaddid 26122  ax-hfvmul 26123  ax-hvmulid 26124  ax-hvmulass 26125  ax-hvdistr1 26126  ax-hvdistr2 26127  ax-hvmul0 26128  ax-hfi 26197  ax-his1 26200  ax-his2 26201  ax-his3 26202  ax-his4 26203
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-seq 12093  df-exp 12152  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-grpo 25394  df-gid 25395  df-ablo 25485  df-vc 25640  df-nv 25686  df-va 25689  df-ba 25690  df-sm 25691  df-0v 25692  df-nmcv 25694  df-hnorm 26086  df-hba 26087  df-hvsub 26089  df-nmop 26959  df-lnop 26961  df-bdop 26962
This theorem is referenced by:  nmbdoplb  27145  nmopcoadji  27221
  Copyright terms: Public domain W3C validator