HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmbdfnlbi Structured version   Unicode version

Theorem nmbdfnlbi 25604
Description: A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmbdfnlb.1  |-  ( T  e.  LinFn  /\  ( normfn `  T )  e.  RR )
Assertion
Ref Expression
nmbdfnlbi  |-  ( A  e.  ~H  ->  ( abs `  ( T `  A ) )  <_ 
( ( normfn `  T
)  x.  ( normh `  A ) ) )

Proof of Theorem nmbdfnlbi
StepHypRef Expression
1 fveq2 5798 . . . . . 6  |-  ( A  =  0h  ->  ( T `  A )  =  ( T `  0h ) )
2 nmbdfnlb.1 . . . . . . . 8  |-  ( T  e.  LinFn  /\  ( normfn `  T )  e.  RR )
32simpli 458 . . . . . . 7  |-  T  e. 
LinFn
43lnfn0i 25597 . . . . . 6  |-  ( T `
 0h )  =  0
51, 4syl6eq 2511 . . . . 5  |-  ( A  =  0h  ->  ( T `  A )  =  0 )
65abs00bd 12897 . . . 4  |-  ( A  =  0h  ->  ( abs `  ( T `  A ) )  =  0 )
7 0le0 10521 . . . . 5  |-  0  <_  0
8 fveq2 5798 . . . . . . . 8  |-  ( A  =  0h  ->  ( normh `  A )  =  ( normh `  0h )
)
9 norm0 24681 . . . . . . . 8  |-  ( normh `  0h )  =  0
108, 9syl6eq 2511 . . . . . . 7  |-  ( A  =  0h  ->  ( normh `  A )  =  0 )
1110oveq2d 6215 . . . . . 6  |-  ( A  =  0h  ->  (
( normfn `  T )  x.  ( normh `  A )
)  =  ( (
normfn `  T )  x.  0 ) )
122simpri 462 . . . . . . . 8  |-  ( normfn `  T )  e.  RR
1312recni 9508 . . . . . . 7  |-  ( normfn `  T )  e.  CC
1413mul01i 9669 . . . . . 6  |-  ( (
normfn `  T )  x.  0 )  =  0
1511, 14syl6req 2512 . . . . 5  |-  ( A  =  0h  ->  0  =  ( ( normfn `  T )  x.  ( normh `  A ) ) )
167, 15syl5breq 4434 . . . 4  |-  ( A  =  0h  ->  0  <_  ( ( normfn `  T
)  x.  ( normh `  A ) ) )
176, 16eqbrtrd 4419 . . 3  |-  ( A  =  0h  ->  ( abs `  ( T `  A ) )  <_ 
( ( normfn `  T
)  x.  ( normh `  A ) ) )
1817adantl 466 . 2  |-  ( ( A  e.  ~H  /\  A  =  0h )  ->  ( abs `  ( T `  A )
)  <_  ( ( normfn `
 T )  x.  ( normh `  A )
) )
193lnfnfi 25596 . . . . . . . . . 10  |-  T : ~H
--> CC
2019ffvelrni 5950 . . . . . . . . 9  |-  ( A  e.  ~H  ->  ( T `  A )  e.  CC )
2120abscld 13039 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( abs `  ( T `  A ) )  e.  RR )
2221adantr 465 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  ( T `  A )
)  e.  RR )
2322recnd 9522 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  ( T `  A )
)  e.  CC )
24 normcl 24678 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( normh `  A )  e.  RR )
2524adantr 465 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  RR )
2625recnd 9522 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  CC )
27 normne0 24683 . . . . . . 7  |-  ( A  e.  ~H  ->  (
( normh `  A )  =/=  0  <->  A  =/=  0h )
)
2827biimpar 485 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  =/=  0 )
2923, 26, 28divrec2d 10221 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( abs `  ( T `  A )
)  /  ( normh `  A ) )  =  ( ( 1  / 
( normh `  A )
)  x.  ( abs `  ( T `  A
) ) ) )
3025, 28rereccld 10268 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  RR )
3130recnd 9522 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  CC )
32 simpl 457 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  A  e.  ~H )
333lnfnmuli 25599 . . . . . . . 8  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  ( ( 1  / 
( normh `  A )
)  x.  ( T `
 A ) ) )
3431, 32, 33syl2anc 661 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( T `  (
( 1  /  ( normh `  A ) )  .h  A ) )  =  ( ( 1  /  ( normh `  A
) )  x.  ( T `  A )
) )
3534fveq2d 5802 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) ) )  =  ( abs `  (
( 1  /  ( normh `  A ) )  x.  ( T `  A ) ) ) )
3620adantr 465 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( T `  A
)  e.  CC )
3731, 36absmuld 13057 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  (
( 1  /  ( normh `  A ) )  x.  ( T `  A ) ) )  =  ( ( abs `  ( 1  /  ( normh `  A ) ) )  x.  ( abs `  ( T `  A
) ) ) )
38 normgt0 24680 . . . . . . . . . . 11  |-  ( A  e.  ~H  ->  ( A  =/=  0h  <->  0  <  (
normh `  A ) ) )
3938biimpa 484 . . . . . . . . . 10  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( normh `  A ) )
4025, 39recgt0d 10377 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( 1  /  ( normh `  A
) ) )
41 0re 9496 . . . . . . . . . 10  |-  0  e.  RR
42 ltle 9573 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( 1  /  ( normh `  A ) )  e.  RR )  -> 
( 0  <  (
1  /  ( normh `  A ) )  -> 
0  <_  ( 1  /  ( normh `  A
) ) ) )
4341, 42mpan 670 . . . . . . . . 9  |-  ( ( 1  /  ( normh `  A ) )  e.  RR  ->  ( 0  <  ( 1  / 
( normh `  A )
)  ->  0  <_  ( 1  /  ( normh `  A ) ) ) )
4430, 40, 43sylc 60 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <_  ( 1  /  ( normh `  A
) ) )
4530, 44absidd 13026 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  (
1  /  ( normh `  A ) ) )  =  ( 1  / 
( normh `  A )
) )
4645oveq1d 6214 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( abs `  ( T `  A )
) )  =  ( ( 1  /  ( normh `  A ) )  x.  ( abs `  ( T `  A )
) ) )
4735, 37, 463eqtrrd 2500 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  x.  ( abs `  ( T `  A
) ) )  =  ( abs `  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) ) ) )
4829, 47eqtrd 2495 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( abs `  ( T `  A )
)  /  ( normh `  A ) )  =  ( abs `  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) ) ) )
49 hvmulcl 24566 . . . . . 6  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  (
( 1  /  ( normh `  A ) )  .h  A )  e. 
~H )
5031, 32, 49syl2anc 661 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H )
51 normcl 24678 . . . . . . 7  |-  ( ( ( 1  /  ( normh `  A ) )  .h  A )  e. 
~H  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  e.  RR )
5250, 51syl 16 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  e.  RR )
53 norm1 24803 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  1 )
54 eqle 9587 . . . . . 6  |-  ( ( ( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  e.  RR  /\  ( normh `  ( ( 1  / 
( normh `  A )
)  .h  A ) )  =  1 )  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  <_  1 )
5552, 53, 54syl2anc 661 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  <_ 
1 )
56 nmfnlb 25479 . . . . . 6  |-  ( ( T : ~H --> CC  /\  ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) )  <_  1
)  ->  ( abs `  ( T `  (
( 1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normfn `  T ) )
5719, 56mp3an1 1302 . . . . 5  |-  ( ( ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) )  <_  1
)  ->  ( abs `  ( T `  (
( 1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normfn `  T ) )
5850, 55, 57syl2anc 661 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normfn `  T
) )
5948, 58eqbrtrd 4419 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( abs `  ( T `  A )
)  /  ( normh `  A ) )  <_ 
( normfn `  T )
)
6012a1i 11 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normfn `  T )  e.  RR )
61 ledivmul2 10319 . . . 4  |-  ( ( ( abs `  ( T `  A )
)  e.  RR  /\  ( normfn `  T )  e.  RR  /\  ( (
normh `  A )  e.  RR  /\  0  < 
( normh `  A )
) )  ->  (
( ( abs `  ( T `  A )
)  /  ( normh `  A ) )  <_ 
( normfn `  T )  <->  ( abs `  ( T `
 A ) )  <_  ( ( normfn `  T )  x.  ( normh `  A ) ) ) )
6222, 60, 25, 39, 61syl112anc 1223 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( ( abs `  ( T `  A
) )  /  ( normh `  A ) )  <_  ( normfn `  T
)  <->  ( abs `  ( T `  A )
)  <_  ( ( normfn `
 T )  x.  ( normh `  A )
) ) )
6359, 62mpbid 210 . 2  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  ( T `  A )
)  <_  ( ( normfn `
 T )  x.  ( normh `  A )
) )
6418, 63pm2.61dane 2769 1  |-  ( A  e.  ~H  ->  ( abs `  ( T `  A ) )  <_ 
( ( normfn `  T
)  x.  ( normh `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2647   class class class wbr 4399   -->wf 5521   ` cfv 5525  (class class class)co 6199   CCcc 9390   RRcr 9391   0cc0 9392   1c1 9393    x. cmul 9397    < clt 9528    <_ cle 9529    / cdiv 10103   abscabs 12840   ~Hchil 24472    .h csm 24474   normhcno 24476   0hc0v 24477   normfncnmf 24504   LinFnclf 24507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470  ax-hilex 24552  ax-hv0cl 24556  ax-hvaddid 24557  ax-hfvmul 24558  ax-hvmulid 24559  ax-hvmul0 24563  ax-hfi 24632  ax-his1 24635  ax-his3 24637  ax-his4 24638
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-2nd 6687  df-recs 6941  df-rdg 6975  df-er 7210  df-map 7325  df-en 7420  df-dom 7421  df-sdom 7422  df-sup 7801  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104  df-nn 10433  df-2 10490  df-3 10491  df-n0 10690  df-z 10757  df-uz 10972  df-rp 11102  df-seq 11923  df-exp 11982  df-cj 12705  df-re 12706  df-im 12707  df-sqr 12841  df-abs 12842  df-hnorm 24521  df-nmfn 25400  df-lnfn 25403
This theorem is referenced by:  nmbdfnlb  25605
  Copyright terms: Public domain W3C validator