HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmbdfnlbi Structured version   Unicode version

Theorem nmbdfnlbi 27537
Description: A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmbdfnlb.1  |-  ( T  e.  LinFn  /\  ( normfn `  T )  e.  RR )
Assertion
Ref Expression
nmbdfnlbi  |-  ( A  e.  ~H  ->  ( abs `  ( T `  A ) )  <_ 
( ( normfn `  T
)  x.  ( normh `  A ) ) )

Proof of Theorem nmbdfnlbi
StepHypRef Expression
1 fveq2 5881 . . . . . 6  |-  ( A  =  0h  ->  ( T `  A )  =  ( T `  0h ) )
2 nmbdfnlb.1 . . . . . . . 8  |-  ( T  e.  LinFn  /\  ( normfn `  T )  e.  RR )
32simpli 459 . . . . . . 7  |-  T  e. 
LinFn
43lnfn0i 27530 . . . . . 6  |-  ( T `
 0h )  =  0
51, 4syl6eq 2486 . . . . 5  |-  ( A  =  0h  ->  ( T `  A )  =  0 )
65abs00bd 13333 . . . 4  |-  ( A  =  0h  ->  ( abs `  ( T `  A ) )  =  0 )
7 0le0 10699 . . . . 5  |-  0  <_  0
8 fveq2 5881 . . . . . . . 8  |-  ( A  =  0h  ->  ( normh `  A )  =  ( normh `  0h )
)
9 norm0 26616 . . . . . . . 8  |-  ( normh `  0h )  =  0
108, 9syl6eq 2486 . . . . . . 7  |-  ( A  =  0h  ->  ( normh `  A )  =  0 )
1110oveq2d 6321 . . . . . 6  |-  ( A  =  0h  ->  (
( normfn `  T )  x.  ( normh `  A )
)  =  ( (
normfn `  T )  x.  0 ) )
122simpri 463 . . . . . . . 8  |-  ( normfn `  T )  e.  RR
1312recni 9654 . . . . . . 7  |-  ( normfn `  T )  e.  CC
1413mul01i 9822 . . . . . 6  |-  ( (
normfn `  T )  x.  0 )  =  0
1511, 14syl6req 2487 . . . . 5  |-  ( A  =  0h  ->  0  =  ( ( normfn `  T )  x.  ( normh `  A ) ) )
167, 15syl5breq 4461 . . . 4  |-  ( A  =  0h  ->  0  <_  ( ( normfn `  T
)  x.  ( normh `  A ) ) )
176, 16eqbrtrd 4446 . . 3  |-  ( A  =  0h  ->  ( abs `  ( T `  A ) )  <_ 
( ( normfn `  T
)  x.  ( normh `  A ) ) )
1817adantl 467 . 2  |-  ( ( A  e.  ~H  /\  A  =  0h )  ->  ( abs `  ( T `  A )
)  <_  ( ( normfn `
 T )  x.  ( normh `  A )
) )
193lnfnfi 27529 . . . . . . . . . 10  |-  T : ~H
--> CC
2019ffvelrni 6036 . . . . . . . . 9  |-  ( A  e.  ~H  ->  ( T `  A )  e.  CC )
2120abscld 13476 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( abs `  ( T `  A ) )  e.  RR )
2221adantr 466 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  ( T `  A )
)  e.  RR )
2322recnd 9668 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  ( T `  A )
)  e.  CC )
24 normcl 26613 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( normh `  A )  e.  RR )
2524adantr 466 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  RR )
2625recnd 9668 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  CC )
27 normne0 26618 . . . . . . 7  |-  ( A  e.  ~H  ->  (
( normh `  A )  =/=  0  <->  A  =/=  0h )
)
2827biimpar 487 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  =/=  0 )
2923, 26, 28divrec2d 10386 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( abs `  ( T `  A )
)  /  ( normh `  A ) )  =  ( ( 1  / 
( normh `  A )
)  x.  ( abs `  ( T `  A
) ) ) )
3025, 28rereccld 10433 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  RR )
3130recnd 9668 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  CC )
32 simpl 458 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  A  e.  ~H )
333lnfnmuli 27532 . . . . . . . 8  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  ( ( 1  / 
( normh `  A )
)  x.  ( T `
 A ) ) )
3431, 32, 33syl2anc 665 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( T `  (
( 1  /  ( normh `  A ) )  .h  A ) )  =  ( ( 1  /  ( normh `  A
) )  x.  ( T `  A )
) )
3534fveq2d 5885 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) ) )  =  ( abs `  (
( 1  /  ( normh `  A ) )  x.  ( T `  A ) ) ) )
3620adantr 466 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( T `  A
)  e.  CC )
3731, 36absmuld 13494 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  (
( 1  /  ( normh `  A ) )  x.  ( T `  A ) ) )  =  ( ( abs `  ( 1  /  ( normh `  A ) ) )  x.  ( abs `  ( T `  A
) ) ) )
38 normgt0 26615 . . . . . . . . . . 11  |-  ( A  e.  ~H  ->  ( A  =/=  0h  <->  0  <  (
normh `  A ) ) )
3938biimpa 486 . . . . . . . . . 10  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( normh `  A ) )
4025, 39recgt0d 10541 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( 1  /  ( normh `  A
) ) )
41 0re 9642 . . . . . . . . . 10  |-  0  e.  RR
42 ltle 9721 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( 1  /  ( normh `  A ) )  e.  RR )  -> 
( 0  <  (
1  /  ( normh `  A ) )  -> 
0  <_  ( 1  /  ( normh `  A
) ) ) )
4341, 42mpan 674 . . . . . . . . 9  |-  ( ( 1  /  ( normh `  A ) )  e.  RR  ->  ( 0  <  ( 1  / 
( normh `  A )
)  ->  0  <_  ( 1  /  ( normh `  A ) ) ) )
4430, 40, 43sylc 62 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <_  ( 1  /  ( normh `  A
) ) )
4530, 44absidd 13463 . . . . . . 7  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  (
1  /  ( normh `  A ) ) )  =  ( 1  / 
( normh `  A )
) )
4645oveq1d 6320 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( abs `  (
1  /  ( normh `  A ) ) )  x.  ( abs `  ( T `  A )
) )  =  ( ( 1  /  ( normh `  A ) )  x.  ( abs `  ( T `  A )
) ) )
4735, 37, 463eqtrrd 2475 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  x.  ( abs `  ( T `  A
) ) )  =  ( abs `  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) ) ) )
4829, 47eqtrd 2470 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( abs `  ( T `  A )
)  /  ( normh `  A ) )  =  ( abs `  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) ) ) )
49 hvmulcl 26501 . . . . . 6  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  (
( 1  /  ( normh `  A ) )  .h  A )  e. 
~H )
5031, 32, 49syl2anc 665 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H )
51 normcl 26613 . . . . . . 7  |-  ( ( ( 1  /  ( normh `  A ) )  .h  A )  e. 
~H  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  e.  RR )
5250, 51syl 17 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  e.  RR )
53 norm1 26737 . . . . . 6  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  1 )
54 eqle 9735 . . . . . 6  |-  ( ( ( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  e.  RR  /\  ( normh `  ( ( 1  / 
( normh `  A )
)  .h  A ) )  =  1 )  ->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  <_  1 )
5552, 53, 54syl2anc 665 . . . . 5  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  <_ 
1 )
56 nmfnlb 27412 . . . . . 6  |-  ( ( T : ~H --> CC  /\  ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) )  <_  1
)  ->  ( abs `  ( T `  (
( 1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normfn `  T ) )
5719, 56mp3an1 1347 . . . . 5  |-  ( ( ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  ( normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) )  <_  1
)  ->  ( abs `  ( T `  (
( 1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normfn `  T ) )
5850, 55, 57syl2anc 665 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  ( T `  ( (
1  /  ( normh `  A ) )  .h  A ) ) )  <_  ( normfn `  T
) )
5948, 58eqbrtrd 4446 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( abs `  ( T `  A )
)  /  ( normh `  A ) )  <_ 
( normfn `  T )
)
6012a1i 11 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normfn `  T )  e.  RR )
61 ledivmul2 10483 . . . 4  |-  ( ( ( abs `  ( T `  A )
)  e.  RR  /\  ( normfn `  T )  e.  RR  /\  ( (
normh `  A )  e.  RR  /\  0  < 
( normh `  A )
) )  ->  (
( ( abs `  ( T `  A )
)  /  ( normh `  A ) )  <_ 
( normfn `  T )  <->  ( abs `  ( T `
 A ) )  <_  ( ( normfn `  T )  x.  ( normh `  A ) ) ) )
6222, 60, 25, 39, 61syl112anc 1268 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( ( abs `  ( T `  A
) )  /  ( normh `  A ) )  <_  ( normfn `  T
)  <->  ( abs `  ( T `  A )
)  <_  ( ( normfn `
 T )  x.  ( normh `  A )
) ) )
6359, 62mpbid 213 . 2  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  ( T `  A )
)  <_  ( ( normfn `
 T )  x.  ( normh `  A )
) )
6418, 63pm2.61dane 2749 1  |-  ( A  e.  ~H  ->  ( abs `  ( T `  A ) )  <_ 
( ( normfn `  T
)  x.  ( normh `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870    =/= wne 2625   class class class wbr 4426   -->wf 5597   ` cfv 5601  (class class class)co 6305   CCcc 9536   RRcr 9537   0cc0 9538   1c1 9539    x. cmul 9543    < clt 9674    <_ cle 9675    / cdiv 10268   abscabs 13276   ~Hchil 26407    .h csm 26409   normhcno 26411   0hc0v 26412   normfncnmf 26439   LinFnclf 26442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-hilex 26487  ax-hv0cl 26491  ax-hvaddid 26492  ax-hfvmul 26493  ax-hvmulid 26494  ax-hvmul0 26498  ax-hfi 26567  ax-his1 26570  ax-his3 26572  ax-his4 26573
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-sdom 7580  df-sup 7962  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-seq 12211  df-exp 12270  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-hnorm 26456  df-nmfn 27333  df-lnfn 27336
This theorem is referenced by:  nmbdfnlb  27538
  Copyright terms: Public domain W3C validator