MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nm2dif Structured version   Unicode version

Theorem nm2dif 20191
Description: Inequality for the difference of norms. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nmf.x  |-  X  =  ( Base `  G
)
nmf.n  |-  N  =  ( norm `  G
)
nmmtri.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
nm2dif  |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  A
)  -  ( N `
 B ) )  <_  ( N `  ( A  .-  B ) ) )

Proof of Theorem nm2dif
StepHypRef Expression
1 nmf.x . . . . 5  |-  X  =  ( Base `  G
)
2 nmf.n . . . . 5  |-  N  =  ( norm `  G
)
31, 2nmcl 20182 . . . 4  |-  ( ( G  e. NrmGrp  /\  A  e.  X )  ->  ( N `  A )  e.  RR )
433adant3 1008 . . 3  |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  A )  e.  RR )
51, 2nmcl 20182 . . . 4  |-  ( ( G  e. NrmGrp  /\  B  e.  X )  ->  ( N `  B )  e.  RR )
653adant2 1007 . . 3  |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  B )  e.  RR )
74, 6resubcld 9768 . 2  |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  A
)  -  ( N `
 B ) )  e.  RR )
87recnd 9404 . . 3  |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  A
)  -  ( N `
 B ) )  e.  CC )
98abscld 12914 . 2  |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  ( abs `  ( ( N `
 A )  -  ( N `  B ) ) )  e.  RR )
10 simp1 988 . . 3  |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  G  e. NrmGrp )
11 ngpgrp 20166 . . . 4  |-  ( G  e. NrmGrp  ->  G  e.  Grp )
12 nmmtri.m . . . . 5  |-  .-  =  ( -g `  G )
131, 12grpsubcl 15597 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  B  e.  X )  ->  ( A  .-  B
)  e.  X )
1411, 13syl3an1 1251 . . 3  |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  ( A  .-  B )  e.  X )
151, 2nmcl 20182 . . 3  |-  ( ( G  e. NrmGrp  /\  ( A  .-  B )  e.  X )  ->  ( N `  ( A  .-  B ) )  e.  RR )
1610, 14, 15syl2anc 661 . 2  |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A  .-  B ) )  e.  RR )
177leabsd 12893 . 2  |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  A
)  -  ( N `
 B ) )  <_  ( abs `  (
( N `  A
)  -  ( N `
 B ) ) ) )
181, 2, 12nmrtri 20190 . 2  |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  ( abs `  ( ( N `
 A )  -  ( N `  B ) ) )  <_  ( N `  ( A  .-  B ) ) )
197, 9, 16, 17, 18letrd 9520 1  |-  ( ( G  e. NrmGrp  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  A
)  -  ( N `
 B ) )  <_  ( N `  ( A  .-  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   RRcr 9273    <_ cle 9411    - cmin 9587   abscabs 12715   Basecbs 14166   Grpcgrp 15402   -gcsg 15405   normcnm 20144  NrmGrpcngp 20145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-map 7208  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-fz 11430  df-seq 11799  df-exp 11858  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-plusg 14243  df-mulr 14244  df-tset 14249  df-ple 14250  df-ds 14252  df-0g 14372  df-topgen 14374  df-xrs 14432  df-mnd 15407  df-grp 15536  df-minusg 15537  df-sbg 15538  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-top 18478  df-bases 18480  df-topon 18481  df-topsp 18482  df-xms 19870  df-ms 19871  df-nm 20150  df-ngp 20151
This theorem is referenced by:  nlmvscnlem2  20241  nrginvrcnlem  20246  ipcnlem2  20731
  Copyright terms: Public domain W3C validator