MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmvscn Structured version   Unicode version

Theorem nlmvscn 21362
Description: The scalar multiplication of a normed module is continuous. Lemma for nrgtrg 21364 and nlmtlm 21368. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nlmvscn.f  |-  F  =  (Scalar `  W )
nlmvscn.sf  |-  .x.  =  ( .sf `  W
)
nlmvscn.j  |-  J  =  ( TopOpen `  W )
nlmvscn.kf  |-  K  =  ( TopOpen `  F )
Assertion
Ref Expression
nlmvscn  |-  ( W  e. NrmMod  ->  .x.  e.  (
( K  tX  J
)  Cn  J ) )

Proof of Theorem nlmvscn
Dummy variables  r  x  y  s  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlmlmod 21353 . . . 4  |-  ( W  e. NrmMod  ->  W  e.  LMod )
2 eqid 2454 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
3 nlmvscn.f . . . . 5  |-  F  =  (Scalar `  W )
4 eqid 2454 . . . . 5  |-  ( Base `  F )  =  (
Base `  F )
5 nlmvscn.sf . . . . 5  |-  .x.  =  ( .sf `  W
)
62, 3, 4, 5lmodscaf 17729 . . . 4  |-  ( W  e.  LMod  ->  .x.  :
( ( Base `  F
)  X.  ( Base `  W ) ) --> (
Base `  W )
)
71, 6syl 16 . . 3  |-  ( W  e. NrmMod  ->  .x.  : (
( Base `  F )  X.  ( Base `  W
) ) --> ( Base `  W ) )
8 eqid 2454 . . . . . . 7  |-  ( dist `  W )  =  (
dist `  W )
9 eqid 2454 . . . . . . 7  |-  ( dist `  F )  =  (
dist `  F )
10 eqid 2454 . . . . . . 7  |-  ( norm `  W )  =  (
norm `  W )
11 eqid 2454 . . . . . . 7  |-  ( norm `  F )  =  (
norm `  F )
12 eqid 2454 . . . . . . 7  |-  ( .s
`  W )  =  ( .s `  W
)
13 eqid 2454 . . . . . . 7  |-  ( ( r  /  2 )  /  ( ( (
norm `  F ) `  x )  +  1 ) )  =  ( ( r  /  2
)  /  ( ( ( norm `  F
) `  x )  +  1 ) )
14 eqid 2454 . . . . . . 7  |-  ( ( r  /  2 )  /  ( ( (
norm `  W ) `  y )  +  ( ( r  /  2
)  /  ( ( ( norm `  F
) `  x )  +  1 ) ) ) )  =  ( ( r  /  2
)  /  ( ( ( norm `  W
) `  y )  +  ( ( r  /  2 )  / 
( ( ( norm `  F ) `  x
)  +  1 ) ) ) )
15 simpll 751 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  r  e.  RR+ )  ->  W  e. NrmMod )
16 simpr 459 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  r  e.  RR+ )  -> 
r  e.  RR+ )
17 simplrl 759 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  r  e.  RR+ )  ->  x  e.  ( Base `  F ) )
18 simplrr 760 . . . . . . 7  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  r  e.  RR+ )  -> 
y  e.  ( Base `  W ) )
193, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18nlmvscnlem1 21361 . . . . . 6  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  r  e.  RR+ )  ->  E. s  e.  RR+  A. z  e.  ( Base `  F
) A. w  e.  ( Base `  W
) ( ( ( x ( dist `  F
) z )  < 
s  /\  ( y
( dist `  W )
w )  <  s
)  ->  ( (
x ( .s `  W ) y ) ( dist `  W
) ( z ( .s `  W ) w ) )  < 
r ) )
2019ralrimiva 2868 . . . . 5  |-  ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  ->  A. r  e.  RR+  E. s  e.  RR+  A. z  e.  ( Base `  F
) A. w  e.  ( Base `  W
) ( ( ( x ( dist `  F
) z )  < 
s  /\  ( y
( dist `  W )
w )  <  s
)  ->  ( (
x ( .s `  W ) y ) ( dist `  W
) ( z ( .s `  W ) w ) )  < 
r ) )
21 simplrl 759 . . . . . . . . . . . 12  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  ( z  e.  (
Base `  F )  /\  w  e.  ( Base `  W ) ) )  ->  x  e.  ( Base `  F )
)
22 simprl 754 . . . . . . . . . . . 12  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  ( z  e.  (
Base `  F )  /\  w  e.  ( Base `  W ) ) )  ->  z  e.  ( Base `  F )
)
2321, 22ovresd 6416 . . . . . . . . . . 11  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  ( z  e.  (
Base `  F )  /\  w  e.  ( Base `  W ) ) )  ->  ( x
( ( dist `  F
)  |`  ( ( Base `  F )  X.  ( Base `  F ) ) ) z )  =  ( x ( dist `  F ) z ) )
2423breq1d 4449 . . . . . . . . . 10  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  ( z  e.  (
Base `  F )  /\  w  e.  ( Base `  W ) ) )  ->  ( (
x ( ( dist `  F )  |`  (
( Base `  F )  X.  ( Base `  F
) ) ) z )  <  s  <->  ( x
( dist `  F )
z )  <  s
) )
25 simplrr 760 . . . . . . . . . . . 12  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  ( z  e.  (
Base `  F )  /\  w  e.  ( Base `  W ) ) )  ->  y  e.  ( Base `  W )
)
26 simprr 755 . . . . . . . . . . . 12  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  ( z  e.  (
Base `  F )  /\  w  e.  ( Base `  W ) ) )  ->  w  e.  ( Base `  W )
)
2725, 26ovresd 6416 . . . . . . . . . . 11  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  ( z  e.  (
Base `  F )  /\  w  e.  ( Base `  W ) ) )  ->  ( y
( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) w )  =  ( y ( dist `  W ) w ) )
2827breq1d 4449 . . . . . . . . . 10  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  ( z  e.  (
Base `  F )  /\  w  e.  ( Base `  W ) ) )  ->  ( (
y ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) w )  <  s  <->  ( y
( dist `  W )
w )  <  s
) )
2924, 28anbi12d 708 . . . . . . . . 9  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  ( z  e.  (
Base `  F )  /\  w  e.  ( Base `  W ) ) )  ->  ( (
( x ( (
dist `  F )  |`  ( ( Base `  F
)  X.  ( Base `  F ) ) ) z )  <  s  /\  ( y ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) w )  <  s
)  <->  ( ( x ( dist `  F
) z )  < 
s  /\  ( y
( dist `  W )
w )  <  s
) ) )
302, 3, 4, 5, 12scafval 17726 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) )  ->  (
x  .x.  y )  =  ( x ( .s `  W ) y ) )
3130ad2antlr 724 . . . . . . . . . . . 12  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  ( z  e.  (
Base `  F )  /\  w  e.  ( Base `  W ) ) )  ->  ( x  .x.  y )  =  ( x ( .s `  W ) y ) )
322, 3, 4, 5, 12scafval 17726 . . . . . . . . . . . . 13  |-  ( ( z  e.  ( Base `  F )  /\  w  e.  ( Base `  W
) )  ->  (
z  .x.  w )  =  ( z ( .s `  W ) w ) )
3332adantl 464 . . . . . . . . . . . 12  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  ( z  e.  (
Base `  F )  /\  w  e.  ( Base `  W ) ) )  ->  ( z  .x.  w )  =  ( z ( .s `  W ) w ) )
3431, 33oveq12d 6288 . . . . . . . . . . 11  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  ( z  e.  (
Base `  F )  /\  w  e.  ( Base `  W ) ) )  ->  ( (
x  .x.  y )
( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) ( z  .x.  w ) )  =  ( ( x ( .s `  W ) y ) ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) ( z ( .s
`  W ) w ) ) )
351ad2antrr 723 . . . . . . . . . . . . 13  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  ( z  e.  (
Base `  F )  /\  w  e.  ( Base `  W ) ) )  ->  W  e.  LMod )
362, 3, 12, 4lmodvscl 17724 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  x  e.  ( Base `  F
)  /\  y  e.  ( Base `  W )
)  ->  ( x
( .s `  W
) y )  e.  ( Base `  W
) )
3735, 21, 25, 36syl3anc 1226 . . . . . . . . . . . 12  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  ( z  e.  (
Base `  F )  /\  w  e.  ( Base `  W ) ) )  ->  ( x
( .s `  W
) y )  e.  ( Base `  W
) )
382, 3, 12, 4lmodvscl 17724 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  z  e.  ( Base `  F
)  /\  w  e.  ( Base `  W )
)  ->  ( z
( .s `  W
) w )  e.  ( Base `  W
) )
3935, 22, 26, 38syl3anc 1226 . . . . . . . . . . . 12  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  ( z  e.  (
Base `  F )  /\  w  e.  ( Base `  W ) ) )  ->  ( z
( .s `  W
) w )  e.  ( Base `  W
) )
4037, 39ovresd 6416 . . . . . . . . . . 11  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  ( z  e.  (
Base `  F )  /\  w  e.  ( Base `  W ) ) )  ->  ( (
x ( .s `  W ) y ) ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) ( z ( .s `  W ) w ) )  =  ( ( x ( .s `  W ) y ) ( dist `  W ) ( z ( .s `  W
) w ) ) )
4134, 40eqtrd 2495 . . . . . . . . . 10  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  ( z  e.  (
Base `  F )  /\  w  e.  ( Base `  W ) ) )  ->  ( (
x  .x.  y )
( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) ( z  .x.  w ) )  =  ( ( x ( .s `  W ) y ) ( dist `  W ) ( z ( .s `  W
) w ) ) )
4241breq1d 4449 . . . . . . . . 9  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  ( z  e.  (
Base `  F )  /\  w  e.  ( Base `  W ) ) )  ->  ( (
( x  .x.  y
) ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) ( z  .x.  w ) )  <  r  <->  ( (
x ( .s `  W ) y ) ( dist `  W
) ( z ( .s `  W ) w ) )  < 
r ) )
4329, 42imbi12d 318 . . . . . . . 8  |-  ( ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  /\  ( z  e.  (
Base `  F )  /\  w  e.  ( Base `  W ) ) )  ->  ( (
( ( x ( ( dist `  F
)  |`  ( ( Base `  F )  X.  ( Base `  F ) ) ) z )  < 
s  /\  ( y
( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) w )  < 
s )  ->  (
( x  .x.  y
) ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) ( z  .x.  w ) )  <  r )  <-> 
( ( ( x ( dist `  F
) z )  < 
s  /\  ( y
( dist `  W )
w )  <  s
)  ->  ( (
x ( .s `  W ) y ) ( dist `  W
) ( z ( .s `  W ) w ) )  < 
r ) ) )
44432ralbidva 2896 . . . . . . 7  |-  ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  -> 
( A. z  e.  ( Base `  F
) A. w  e.  ( Base `  W
) ( ( ( x ( ( dist `  F )  |`  (
( Base `  F )  X.  ( Base `  F
) ) ) z )  <  s  /\  ( y ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) w )  <  s
)  ->  ( (
x  .x.  y )
( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) ( z  .x.  w ) )  < 
r )  <->  A. z  e.  ( Base `  F
) A. w  e.  ( Base `  W
) ( ( ( x ( dist `  F
) z )  < 
s  /\  ( y
( dist `  W )
w )  <  s
)  ->  ( (
x ( .s `  W ) y ) ( dist `  W
) ( z ( .s `  W ) w ) )  < 
r ) ) )
4544rexbidv 2965 . . . . . 6  |-  ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  -> 
( E. s  e.  RR+  A. z  e.  (
Base `  F ) A. w  e.  ( Base `  W ) ( ( ( x ( ( dist `  F
)  |`  ( ( Base `  F )  X.  ( Base `  F ) ) ) z )  < 
s  /\  ( y
( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) w )  < 
s )  ->  (
( x  .x.  y
) ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) ( z  .x.  w ) )  <  r )  <->  E. s  e.  RR+  A. z  e.  ( Base `  F
) A. w  e.  ( Base `  W
) ( ( ( x ( dist `  F
) z )  < 
s  /\  ( y
( dist `  W )
w )  <  s
)  ->  ( (
x ( .s `  W ) y ) ( dist `  W
) ( z ( .s `  W ) w ) )  < 
r ) ) )
4645ralbidv 2893 . . . . 5  |-  ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  -> 
( A. r  e.  RR+  E. s  e.  RR+  A. z  e.  ( Base `  F ) A. w  e.  ( Base `  W
) ( ( ( x ( ( dist `  F )  |`  (
( Base `  F )  X.  ( Base `  F
) ) ) z )  <  s  /\  ( y ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) w )  <  s
)  ->  ( (
x  .x.  y )
( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) ( z  .x.  w ) )  < 
r )  <->  A. r  e.  RR+  E. s  e.  RR+  A. z  e.  (
Base `  F ) A. w  e.  ( Base `  W ) ( ( ( x (
dist `  F )
z )  <  s  /\  ( y ( dist `  W ) w )  <  s )  -> 
( ( x ( .s `  W ) y ) ( dist `  W ) ( z ( .s `  W
) w ) )  <  r ) ) )
4720, 46mpbird 232 . . . 4  |-  ( ( W  e. NrmMod  /\  (
x  e.  ( Base `  F )  /\  y  e.  ( Base `  W
) ) )  ->  A. r  e.  RR+  E. s  e.  RR+  A. z  e.  ( Base `  F
) A. w  e.  ( Base `  W
) ( ( ( x ( ( dist `  F )  |`  (
( Base `  F )  X.  ( Base `  F
) ) ) z )  <  s  /\  ( y ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) w )  <  s
)  ->  ( (
x  .x.  y )
( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) ( z  .x.  w ) )  < 
r ) )
4847ralrimivva 2875 . . 3  |-  ( W  e. NrmMod  ->  A. x  e.  (
Base `  F ) A. y  e.  ( Base `  W ) A. r  e.  RR+  E. s  e.  RR+  A. z  e.  ( Base `  F
) A. w  e.  ( Base `  W
) ( ( ( x ( ( dist `  F )  |`  (
( Base `  F )  X.  ( Base `  F
) ) ) z )  <  s  /\  ( y ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) w )  <  s
)  ->  ( (
x  .x.  y )
( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) ( z  .x.  w ) )  < 
r ) )
493nlmngp2 21355 . . . . . 6  |-  ( W  e. NrmMod  ->  F  e. NrmGrp )
50 ngpms 21286 . . . . . 6  |-  ( F  e. NrmGrp  ->  F  e.  MetSp )
5149, 50syl 16 . . . . 5  |-  ( W  e. NrmMod  ->  F  e.  MetSp )
52 msxms 21123 . . . . 5  |-  ( F  e.  MetSp  ->  F  e.  *MetSp )
53 eqid 2454 . . . . . 6  |-  ( (
dist `  F )  |`  ( ( Base `  F
)  X.  ( Base `  F ) ) )  =  ( ( dist `  F )  |`  (
( Base `  F )  X.  ( Base `  F
) ) )
544, 53xmsxmet 21125 . . . . 5  |-  ( F  e.  *MetSp  ->  (
( dist `  F )  |`  ( ( Base `  F
)  X.  ( Base `  F ) ) )  e.  ( *Met `  ( Base `  F
) ) )
5551, 52, 543syl 20 . . . 4  |-  ( W  e. NrmMod  ->  ( ( dist `  F )  |`  (
( Base `  F )  X.  ( Base `  F
) ) )  e.  ( *Met `  ( Base `  F )
) )
56 nlmngp 21352 . . . . . 6  |-  ( W  e. NrmMod  ->  W  e. NrmGrp )
57 ngpms 21286 . . . . . 6  |-  ( W  e. NrmGrp  ->  W  e.  MetSp )
5856, 57syl 16 . . . . 5  |-  ( W  e. NrmMod  ->  W  e.  MetSp )
59 msxms 21123 . . . . 5  |-  ( W  e.  MetSp  ->  W  e.  *MetSp )
60 eqid 2454 . . . . . 6  |-  ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) )  =  ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) )
612, 60xmsxmet 21125 . . . . 5  |-  ( W  e.  *MetSp  ->  (
( dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) )  e.  ( *Met `  ( Base `  W
) ) )
6258, 59, 613syl 20 . . . 4  |-  ( W  e. NrmMod  ->  ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) )  e.  ( *Met `  ( Base `  W )
) )
63 eqid 2454 . . . . 5  |-  ( MetOpen `  ( ( dist `  F
)  |`  ( ( Base `  F )  X.  ( Base `  F ) ) ) )  =  (
MetOpen `  ( ( dist `  F )  |`  (
( Base `  F )  X.  ( Base `  F
) ) ) )
64 eqid 2454 . . . . 5  |-  ( MetOpen `  ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) )  =  (
MetOpen `  ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) )
6563, 64, 64txmetcn 21217 . . . 4  |-  ( ( ( ( dist `  F
)  |`  ( ( Base `  F )  X.  ( Base `  F ) ) )  e.  ( *Met `  ( Base `  F ) )  /\  ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) )  e.  ( *Met `  ( Base `  W ) )  /\  ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) )  e.  ( *Met `  ( Base `  W ) ) )  ->  (  .x.  e.  ( ( ( MetOpen `  ( ( dist `  F
)  |`  ( ( Base `  F )  X.  ( Base `  F ) ) ) )  tX  ( MetOpen
`  ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) ) )  Cn  ( MetOpen `  ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) ) )  <->  (  .x.  : ( ( Base `  F
)  X.  ( Base `  W ) ) --> (
Base `  W )  /\  A. x  e.  (
Base `  F ) A. y  e.  ( Base `  W ) A. r  e.  RR+  E. s  e.  RR+  A. z  e.  ( Base `  F
) A. w  e.  ( Base `  W
) ( ( ( x ( ( dist `  F )  |`  (
( Base `  F )  X.  ( Base `  F
) ) ) z )  <  s  /\  ( y ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) w )  <  s
)  ->  ( (
x  .x.  y )
( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) ( z  .x.  w ) )  < 
r ) ) ) )
6655, 62, 62, 65syl3anc 1226 . . 3  |-  ( W  e. NrmMod  ->  (  .x.  e.  ( ( ( MetOpen `  ( ( dist `  F
)  |`  ( ( Base `  F )  X.  ( Base `  F ) ) ) )  tX  ( MetOpen
`  ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) ) )  Cn  ( MetOpen `  ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) ) )  <->  (  .x.  : ( ( Base `  F
)  X.  ( Base `  W ) ) --> (
Base `  W )  /\  A. x  e.  (
Base `  F ) A. y  e.  ( Base `  W ) A. r  e.  RR+  E. s  e.  RR+  A. z  e.  ( Base `  F
) A. w  e.  ( Base `  W
) ( ( ( x ( ( dist `  F )  |`  (
( Base `  F )  X.  ( Base `  F
) ) ) z )  <  s  /\  ( y ( (
dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) w )  <  s
)  ->  ( (
x  .x.  y )
( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) ( z  .x.  w ) )  < 
r ) ) ) )
677, 48, 66mpbir2and 920 . 2  |-  ( W  e. NrmMod  ->  .x.  e.  (
( ( MetOpen `  (
( dist `  F )  |`  ( ( Base `  F
)  X.  ( Base `  F ) ) ) )  tX  ( MetOpen `  ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) ) )  Cn  ( MetOpen `  ( ( dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) ) ) )
68 nlmvscn.kf . . . . . 6  |-  K  =  ( TopOpen `  F )
6968, 4, 53mstopn 21121 . . . . 5  |-  ( F  e.  MetSp  ->  K  =  ( MetOpen `  ( ( dist `  F )  |`  ( ( Base `  F
)  X.  ( Base `  F ) ) ) ) )
7051, 69syl 16 . . . 4  |-  ( W  e. NrmMod  ->  K  =  (
MetOpen `  ( ( dist `  F )  |`  (
( Base `  F )  X.  ( Base `  F
) ) ) ) )
71 nlmvscn.j . . . . . 6  |-  J  =  ( TopOpen `  W )
7271, 2, 60mstopn 21121 . . . . 5  |-  ( W  e.  MetSp  ->  J  =  ( MetOpen `  ( ( dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) ) )
7358, 72syl 16 . . . 4  |-  ( W  e. NrmMod  ->  J  =  (
MetOpen `  ( ( dist `  W )  |`  (
( Base `  W )  X.  ( Base `  W
) ) ) ) )
7470, 73oveq12d 6288 . . 3  |-  ( W  e. NrmMod  ->  ( K  tX  J )  =  ( ( MetOpen `  ( ( dist `  F )  |`  ( ( Base `  F
)  X.  ( Base `  F ) ) ) )  tX  ( MetOpen `  ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) ) ) )
7574, 73oveq12d 6288 . 2  |-  ( W  e. NrmMod  ->  ( ( K 
tX  J )  Cn  J )  =  ( ( ( MetOpen `  (
( dist `  F )  |`  ( ( Base `  F
)  X.  ( Base `  F ) ) ) )  tX  ( MetOpen `  ( ( dist `  W
)  |`  ( ( Base `  W )  X.  ( Base `  W ) ) ) ) )  Cn  ( MetOpen `  ( ( dist `  W )  |`  ( ( Base `  W
)  X.  ( Base `  W ) ) ) ) ) )
7667, 75eleqtrrd 2545 1  |-  ( W  e. NrmMod  ->  .x.  e.  (
( K  tX  J
)  Cn  J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805   class class class wbr 4439    X. cxp 4986    |` cres 4990   -->wf 5566   ` cfv 5570  (class class class)co 6270   1c1 9482    + caddc 9484    < clt 9617    / cdiv 10202   2c2 10581   RR+crp 11221   Basecbs 14716  Scalarcsca 14787   .scvsca 14788   distcds 14793   TopOpenctopn 14911   LModclmod 17707   .sfcscaf 17708   *Metcxmt 18598   MetOpencmopn 18603    Cn ccn 19892    tX ctx 20227   *MetSpcxme 20986   MetSpcmt 20987   normcnm 21263  NrmGrpcngp 21264  NrmModcnlm 21267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-icc 11539  df-fz 11676  df-fzo 11800  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-hom 14808  df-cco 14809  df-rest 14912  df-topn 14913  df-0g 14931  df-gsum 14932  df-topgen 14933  df-pt 14934  df-prds 14937  df-xrs 14991  df-qtop 14996  df-imas 14997  df-xps 14999  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-grp 16256  df-minusg 16257  df-sbg 16258  df-mulg 16259  df-cntz 16554  df-cmn 16999  df-mgp 17337  df-ur 17349  df-ring 17395  df-lmod 17709  df-scaf 17710  df-psmet 18606  df-xmet 18607  df-met 18608  df-bl 18609  df-mopn 18610  df-top 19566  df-bases 19568  df-topon 19569  df-topsp 19570  df-cn 19895  df-cnp 19896  df-tx 20229  df-hmeo 20422  df-xms 20989  df-ms 20990  df-tms 20991  df-nm 21269  df-ngp 21270  df-nrg 21272  df-nlm 21273
This theorem is referenced by:  nrgtrg  21364  nlmtlm  21368
  Copyright terms: Public domain W3C validator