MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyss Structured version   Visualization version   Unicode version

Theorem nllyss 20495
Description: The "n-locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyss  |-  ( A 
C_  B  -> 𝑛Locally  A  C_ 𝑛Locally  B )

Proof of Theorem nllyss
Dummy variables  j  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3426 . . . . . . 7  |-  ( A 
C_  B  ->  (
( jt  u )  e.  A  ->  ( jt  u )  e.  B
) )
21reximdv 2861 . . . . . 6  |-  ( A 
C_  B  ->  ( E. u  e.  (
( ( nei `  j
) `  { y } )  i^i  ~P x ) ( jt  u )  e.  A  ->  E. u  e.  (
( ( nei `  j
) `  { y } )  i^i  ~P x ) ( jt  u )  e.  B ) )
32ralimdv 2798 . . . . 5  |-  ( A 
C_  B  ->  ( A. y  e.  x  E. u  e.  (
( ( nei `  j
) `  { y } )  i^i  ~P x ) ( jt  u )  e.  A  ->  A. y  e.  x  E. u  e.  (
( ( nei `  j
) `  { y } )  i^i  ~P x ) ( jt  u )  e.  B ) )
43ralimdv 2798 . . . 4  |-  ( A 
C_  B  ->  ( A. x  e.  j  A. y  e.  x  E. u  e.  (
( ( nei `  j
) `  { y } )  i^i  ~P x ) ( jt  u )  e.  A  ->  A. x  e.  j  A. y  e.  x  E. u  e.  (
( ( nei `  j
) `  { y } )  i^i  ~P x ) ( jt  u )  e.  B ) )
54anim2d 569 . . 3  |-  ( A 
C_  B  ->  (
( j  e.  Top  /\ 
A. x  e.  j 
A. y  e.  x  E. u  e.  (
( ( nei `  j
) `  { y } )  i^i  ~P x ) ( jt  u )  e.  A )  ->  ( j  e. 
Top  /\  A. x  e.  j  A. y  e.  x  E. u  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x ) ( jt  u )  e.  B
) ) )
6 isnlly 20484 . . 3  |-  ( j  e. 𝑛Locally  A  <->  ( j  e. 
Top  /\  A. x  e.  j  A. y  e.  x  E. u  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x ) ( jt  u )  e.  A
) )
7 isnlly 20484 . . 3  |-  ( j  e. 𝑛Locally  B  <->  ( j  e. 
Top  /\  A. x  e.  j  A. y  e.  x  E. u  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x ) ( jt  u )  e.  B
) )
85, 6, 73imtr4g 274 . 2  |-  ( A 
C_  B  ->  (
j  e. 𝑛Locally  A  ->  j  e. 𝑛Locally  B ) )
98ssrdv 3438 1  |-  ( A 
C_  B  -> 𝑛Locally  A  C_ 𝑛Locally  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    e. wcel 1887   A.wral 2737   E.wrex 2738    i^i cin 3403    C_ wss 3404   ~Pcpw 3951   {csn 3968   ` cfv 5582  (class class class)co 6290   ↾t crest 15319   Topctop 19917   neicnei 20113  𝑛Locally cnlly 20480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-iota 5546  df-fv 5590  df-ov 6293  df-nlly 20482
This theorem is referenced by:  iinllycon  29977  cvmlift3  30051
  Copyright terms: Public domain W3C validator