MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyrest Structured version   Unicode version

Theorem nllyrest 20113
Description: An open subspace of an n-locally  A space is also n-locally  A. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyrest  |-  ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  ->  ( Jt  B )  e. 𝑛Locally  A )

Proof of Theorem nllyrest
Dummy variables  s  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 20100 . . 3  |-  ( J  e. 𝑛Locally  A  ->  J  e.  Top )
2 resttop 19788 . . 3  |-  ( ( J  e.  Top  /\  B  e.  J )  ->  ( Jt  B )  e.  Top )
31, 2sylan 471 . 2  |-  ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  ->  ( Jt  B )  e.  Top )
4 restopn2 19805 . . . . 5  |-  ( ( J  e.  Top  /\  B  e.  J )  ->  ( x  e.  ( Jt  B )  <->  ( x  e.  J  /\  x  C_  B ) ) )
51, 4sylan 471 . . . 4  |-  ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  ->  (
x  e.  ( Jt  B )  <->  ( x  e.  J  /\  x  C_  B ) ) )
6 simp1l 1020 . . . . . . . . 9  |-  ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  J  e. 𝑛Locally  A
)
7 simp2l 1022 . . . . . . . . 9  |-  ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  x  e.  J )
8 simp3 998 . . . . . . . . 9  |-  ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  y  e.  x )
9 nlly2i 20103 . . . . . . . . 9  |-  ( ( J  e. 𝑛Locally  A  /\  x  e.  J  /\  y  e.  x )  ->  E. s  e.  ~P  x E. u  e.  J  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) )
106, 7, 8, 9syl3anc 1228 . . . . . . . 8  |-  ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  E. s  e.  ~P  x E. u  e.  J  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) )
1133ad2ant1 1017 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  ( Jt  B
)  e.  Top )
12113ad2ant1 1017 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  ( Jt  B )  e.  Top )
13 simp3l 1024 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  u  e.  J
)
14 simp3r2 1105 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  u  C_  s
)
15 simp2 997 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  s  e.  ~P x )
1615elpwid 4025 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  s  C_  x
)
17 simp12r 1110 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  x  C_  B
)
1816, 17sstrd 3509 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  s  C_  B
)
1914, 18sstrd 3509 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  u  C_  B
)
2063ad2ant1 1017 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  J  e. 𝑛Locally  A )
2120, 1syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  J  e.  Top )
22 simp11r 1108 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  B  e.  J
)
23 restopn2 19805 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  e.  Top  /\  B  e.  J )  ->  ( u  e.  ( Jt  B )  <->  ( u  e.  J  /\  u  C_  B ) ) )
2421, 22, 23syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  ( u  e.  ( Jt  B )  <->  ( u  e.  J  /\  u  C_  B ) ) )
2513, 19, 24mpbir2and 922 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  u  e.  ( Jt  B ) )
26 simp3r1 1104 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  y  e.  u
)
27 opnneip 19747 . . . . . . . . . . . . . . . 16  |-  ( ( ( Jt  B )  e.  Top  /\  u  e.  ( Jt  B )  /\  y  e.  u )  ->  u  e.  ( ( nei `  ( Jt  B ) ) `  { y } ) )
2812, 25, 26, 27syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  u  e.  ( ( nei `  ( Jt  B ) ) `  { y } ) )
29 elssuni 4281 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  J  ->  B  C_ 
U. J )
3022, 29syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  B  C_  U. J
)
31 eqid 2457 . . . . . . . . . . . . . . . . . 18  |-  U. J  =  U. J
3231restuni 19790 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  B  C_  U. J )  ->  B  =  U. ( Jt  B ) )
3321, 30, 32syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  B  =  U. ( Jt  B ) )
3418, 33sseqtrd 3535 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  s  C_  U. ( Jt  B ) )
35 eqid 2457 . . . . . . . . . . . . . . . 16  |-  U. ( Jt  B )  =  U. ( Jt  B )
3635ssnei2 19744 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Jt  B )  e.  Top  /\  u  e.  ( ( nei `  ( Jt  B ) ) `  { y } ) )  /\  ( u 
C_  s  /\  s  C_ 
U. ( Jt  B ) ) )  ->  s  e.  ( ( nei `  ( Jt  B ) ) `  { y } ) )
3712, 28, 14, 34, 36syl22anc 1229 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  s  e.  ( ( nei `  ( Jt  B ) ) `  { y } ) )
3837, 15elind 3684 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x ) )
39 restabs 19793 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  s  C_  B  /\  B  e.  J )  ->  (
( Jt  B )t  s )  =  ( Jt  s ) )
4021, 18, 22, 39syl3anc 1228 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  ( ( Jt  B )t  s )  =  ( Jt  s ) )
41 simp3r3 1106 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  ( Jt  s )  e.  A )
4240, 41eqeltrd 2545 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  ( ( Jt  B )t  s )  e.  A
)
4338, 42jca 532 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  ( s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x )  /\  ( ( Jt  B )t  s )  e.  A
) )
44433expa 1196 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  (
x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x )  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  ( s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x )  /\  ( ( Jt  B )t  s )  e.  A
) )
4544rexlimdvaa 2950 . . . . . . . . . 10  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x )  -> 
( E. u  e.  J  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A )  -> 
( s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x )  /\  ( ( Jt  B )t  s )  e.  A
) ) )
4645expimpd 603 . . . . . . . . 9  |-  ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  ( (
s  e.  ~P x  /\  E. u  e.  J  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) )  -> 
( s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x )  /\  ( ( Jt  B )t  s )  e.  A
) ) )
4746reximdv2 2928 . . . . . . . 8  |-  ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  ( E. s  e.  ~P  x E. u  e.  J  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A )  ->  E. s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x ) ( ( Jt  B )t  s )  e.  A ) )
4810, 47mpd 15 . . . . . . 7  |-  ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  E. s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x ) ( ( Jt  B )t  s )  e.  A )
49483expa 1196 . . . . . 6  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B ) )  /\  y  e.  x )  ->  E. s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x ) ( ( Jt  B )t  s )  e.  A )
5049ralrimiva 2871 . . . . 5  |-  ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B ) )  ->  A. y  e.  x  E. s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x ) ( ( Jt  B )t  s )  e.  A )
5150ex 434 . . . 4  |-  ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  ->  (
( x  e.  J  /\  x  C_  B )  ->  A. y  e.  x  E. s  e.  (
( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x ) ( ( Jt  B )t  s )  e.  A ) )
525, 51sylbid 215 . . 3  |-  ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  ->  (
x  e.  ( Jt  B )  ->  A. y  e.  x  E. s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x ) ( ( Jt  B )t  s )  e.  A ) )
5352ralrimiv 2869 . 2  |-  ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  ->  A. x  e.  ( Jt  B ) A. y  e.  x  E. s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x ) ( ( Jt  B )t  s )  e.  A )
54 isnlly 20096 . 2  |-  ( ( Jt  B )  e. 𝑛Locally  A  <->  ( ( Jt  B )  e.  Top  /\ 
A. x  e.  ( Jt  B ) A. y  e.  x  E. s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x ) ( ( Jt  B )t  s )  e.  A ) )
553, 53, 54sylanbrc 664 1  |-  ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  ->  ( Jt  B )  e. 𝑛Locally  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808    i^i cin 3470    C_ wss 3471   ~Pcpw 4015   {csn 4032   U.cuni 4251   ` cfv 5594  (class class class)co 6296   ↾t crest 14838   Topctop 19521   neicnei 19725  𝑛Locally cnlly 20092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-oadd 7152  df-er 7329  df-en 7536  df-fin 7539  df-fi 7889  df-rest 14840  df-topgen 14861  df-top 19526  df-bases 19528  df-topon 19529  df-nei 19726  df-nlly 20094
This theorem is referenced by:  loclly  20114  nllyidm  20116
  Copyright terms: Public domain W3C validator