MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyrest Structured version   Unicode version

Theorem nllyrest 19102
Description: An open subspace of an n-locally  A space is also n-locally  A. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyrest  |-  ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  ->  ( Jt  B )  e. 𝑛Locally  A )

Proof of Theorem nllyrest
Dummy variables  s  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 19089 . . 3  |-  ( J  e. 𝑛Locally  A  ->  J  e.  Top )
2 resttop 18776 . . 3  |-  ( ( J  e.  Top  /\  B  e.  J )  ->  ( Jt  B )  e.  Top )
31, 2sylan 471 . 2  |-  ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  ->  ( Jt  B )  e.  Top )
4 restopn2 18793 . . . . 5  |-  ( ( J  e.  Top  /\  B  e.  J )  ->  ( x  e.  ( Jt  B )  <->  ( x  e.  J  /\  x  C_  B ) ) )
51, 4sylan 471 . . . 4  |-  ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  ->  (
x  e.  ( Jt  B )  <->  ( x  e.  J  /\  x  C_  B ) ) )
6 simp1l 1012 . . . . . . . . 9  |-  ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  J  e. 𝑛Locally  A
)
7 simp2l 1014 . . . . . . . . 9  |-  ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  x  e.  J )
8 simp3 990 . . . . . . . . 9  |-  ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  y  e.  x )
9 nlly2i 19092 . . . . . . . . 9  |-  ( ( J  e. 𝑛Locally  A  /\  x  e.  J  /\  y  e.  x )  ->  E. s  e.  ~P  x E. u  e.  J  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) )
106, 7, 8, 9syl3anc 1218 . . . . . . . 8  |-  ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  E. s  e.  ~P  x E. u  e.  J  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) )
1133ad2ant1 1009 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  ( Jt  B
)  e.  Top )
12113ad2ant1 1009 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  ( Jt  B )  e.  Top )
13 simp3l 1016 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  u  e.  J
)
14 simp3r2 1097 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  u  C_  s
)
15 simp2 989 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  s  e.  ~P x )
1615elpwid 3882 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  s  C_  x
)
17 simp12r 1102 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  x  C_  B
)
1816, 17sstrd 3378 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  s  C_  B
)
1914, 18sstrd 3378 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  u  C_  B
)
2063ad2ant1 1009 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  J  e. 𝑛Locally  A )
2120, 1syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  J  e.  Top )
22 simp11r 1100 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  B  e.  J
)
23 restopn2 18793 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  e.  Top  /\  B  e.  J )  ->  ( u  e.  ( Jt  B )  <->  ( u  e.  J  /\  u  C_  B ) ) )
2421, 22, 23syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  ( u  e.  ( Jt  B )  <->  ( u  e.  J  /\  u  C_  B ) ) )
2513, 19, 24mpbir2and 913 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  u  e.  ( Jt  B ) )
26 simp3r1 1096 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  y  e.  u
)
27 opnneip 18735 . . . . . . . . . . . . . . . 16  |-  ( ( ( Jt  B )  e.  Top  /\  u  e.  ( Jt  B )  /\  y  e.  u )  ->  u  e.  ( ( nei `  ( Jt  B ) ) `  { y } ) )
2812, 25, 26, 27syl3anc 1218 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  u  e.  ( ( nei `  ( Jt  B ) ) `  { y } ) )
29 elssuni 4133 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  J  ->  B  C_ 
U. J )
3022, 29syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  B  C_  U. J
)
31 eqid 2443 . . . . . . . . . . . . . . . . . 18  |-  U. J  =  U. J
3231restuni 18778 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  B  C_  U. J )  ->  B  =  U. ( Jt  B ) )
3321, 30, 32syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  B  =  U. ( Jt  B ) )
3418, 33sseqtrd 3404 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  s  C_  U. ( Jt  B ) )
35 eqid 2443 . . . . . . . . . . . . . . . 16  |-  U. ( Jt  B )  =  U. ( Jt  B )
3635ssnei2 18732 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Jt  B )  e.  Top  /\  u  e.  ( ( nei `  ( Jt  B ) ) `  { y } ) )  /\  ( u 
C_  s  /\  s  C_ 
U. ( Jt  B ) ) )  ->  s  e.  ( ( nei `  ( Jt  B ) ) `  { y } ) )
3712, 28, 14, 34, 36syl22anc 1219 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  s  e.  ( ( nei `  ( Jt  B ) ) `  { y } ) )
3837, 15elind 3552 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x ) )
39 restabs 18781 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  s  C_  B  /\  B  e.  J )  ->  (
( Jt  B )t  s )  =  ( Jt  s ) )
4021, 18, 22, 39syl3anc 1218 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  ( ( Jt  B )t  s )  =  ( Jt  s ) )
41 simp3r3 1098 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  ( Jt  s )  e.  A )
4240, 41eqeltrd 2517 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  ( ( Jt  B )t  s )  e.  A
)
4338, 42jca 532 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  ( s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x )  /\  ( ( Jt  B )t  s )  e.  A
) )
44433expa 1187 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  (
x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x )  /\  (
u  e.  J  /\  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )  ->  ( s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x )  /\  ( ( Jt  B )t  s )  e.  A
) )
4544rexlimdvaa 2854 . . . . . . . . . 10  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  s  e.  ~P x )  -> 
( E. u  e.  J  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A )  -> 
( s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x )  /\  ( ( Jt  B )t  s )  e.  A
) ) )
4645expimpd 603 . . . . . . . . 9  |-  ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  ( (
s  e.  ~P x  /\  E. u  e.  J  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) )  -> 
( s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x )  /\  ( ( Jt  B )t  s )  e.  A
) ) )
4746reximdv2 2837 . . . . . . . 8  |-  ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  ( E. s  e.  ~P  x E. u  e.  J  ( y  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A )  ->  E. s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x ) ( ( Jt  B )t  s )  e.  A ) )
4810, 47mpd 15 . . . . . . 7  |-  ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  E. s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x ) ( ( Jt  B )t  s )  e.  A )
49483expa 1187 . . . . . 6  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B ) )  /\  y  e.  x )  ->  E. s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x ) ( ( Jt  B )t  s )  e.  A )
5049ralrimiva 2811 . . . . 5  |-  ( ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B ) )  ->  A. y  e.  x  E. s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x ) ( ( Jt  B )t  s )  e.  A )
5150ex 434 . . . 4  |-  ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  ->  (
( x  e.  J  /\  x  C_  B )  ->  A. y  e.  x  E. s  e.  (
( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x ) ( ( Jt  B )t  s )  e.  A ) )
525, 51sylbid 215 . . 3  |-  ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  ->  (
x  e.  ( Jt  B )  ->  A. y  e.  x  E. s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x ) ( ( Jt  B )t  s )  e.  A ) )
5352ralrimiv 2810 . 2  |-  ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  ->  A. x  e.  ( Jt  B ) A. y  e.  x  E. s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x ) ( ( Jt  B )t  s )  e.  A )
54 isnlly 19085 . 2  |-  ( ( Jt  B )  e. 𝑛Locally  A  <->  ( ( Jt  B )  e.  Top  /\ 
A. x  e.  ( Jt  B ) A. y  e.  x  E. s  e.  ( ( ( nei `  ( Jt  B ) ) `  { y } )  i^i  ~P x ) ( ( Jt  B )t  s )  e.  A ) )
553, 53, 54sylanbrc 664 1  |-  ( ( J  e. 𝑛Locally  A  /\  B  e.  J )  ->  ( Jt  B )  e. 𝑛Locally  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2727   E.wrex 2728    i^i cin 3339    C_ wss 3340   ~Pcpw 3872   {csn 3889   U.cuni 4103   ` cfv 5430  (class class class)co 6103   ↾t crest 14371   Topctop 18510   neicnei 18713  𝑛Locally cnlly 19081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-oadd 6936  df-er 7113  df-en 7323  df-fin 7326  df-fi 7673  df-rest 14373  df-topgen 14394  df-top 18515  df-bases 18517  df-topon 18518  df-nei 18714  df-nlly 19083
This theorem is referenced by:  loclly  19103  nllyidm  19105
  Copyright terms: Public domain W3C validator