MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyidm Structured version   Unicode version

Theorem nllyidm 19096
Description: Idempotence of the "n-locally" predicate, i.e. being "n-locally  A " is a local property. (Use loclly 19094 to show 𝑛Locally 𝑛Locally  A  = 𝑛Locally  A.) (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyidm  |- Locally 𝑛Locally  A  = 𝑛Locally  A

Proof of Theorem nllyidm
Dummy variables  j  u  v  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 19079 . . . 4  |-  ( j  e. Locally 𝑛Locally  A  ->  j  e.  Top )
2 llyi 19081 . . . . . . 7  |-  ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  E. u  e.  j  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) )
3 simprr3 1038 . . . . . . . . 9  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  (
jt  u )  e. 𝑛Locally  A )
4 simprl 755 . . . . . . . . . 10  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  u  e.  j )
5 ssid 3378 . . . . . . . . . . 11  |-  u  C_  u
65a1i 11 . . . . . . . . . 10  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  u  C_  u )
7 simpl1 991 . . . . . . . . . . . 12  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  j  e. Locally 𝑛Locally  A )
87, 1syl 16 . . . . . . . . . . 11  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  j  e.  Top )
9 restopn2 18784 . . . . . . . . . . 11  |-  ( ( j  e.  Top  /\  u  e.  j )  ->  ( u  e.  ( jt  u )  <->  ( u  e.  j  /\  u  C_  u ) ) )
108, 4, 9syl2anc 661 . . . . . . . . . 10  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  (
u  e.  ( jt  u )  <->  ( u  e.  j  /\  u  C_  u ) ) )
114, 6, 10mpbir2and 913 . . . . . . . . 9  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  u  e.  ( jt  u ) )
12 simprr2 1037 . . . . . . . . 9  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  y  e.  u )
13 nlly2i 19083 . . . . . . . . 9  |-  ( ( ( jt  u )  e. 𝑛Locally  A  /\  u  e.  ( jt  u
)  /\  y  e.  u )  ->  E. v  e.  ~P  u E. z  e.  ( jt  u ) ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) )
143, 11, 12, 13syl3anc 1218 . . . . . . . 8  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  E. v  e.  ~P  u E. z  e.  ( jt  u ) ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) )
15 restopn2 18784 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Top  /\  u  e.  j )  ->  ( z  e.  ( jt  u )  <->  ( z  e.  j  /\  z  C_  u ) ) )
168, 4, 15syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  (
z  e.  ( jt  u )  <->  ( z  e.  j  /\  z  C_  u ) ) )
1716adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  v  e.  ~P u )  -> 
( z  e.  ( jt  u )  <->  ( z  e.  j  /\  z  C_  u ) ) )
188adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  j  e.  Top )
19 simpr2l 1047 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  z  e.  j )
20 simpr31 1078 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  y  e.  z )
21 opnneip 18726 . . . . . . . . . . . . . . . . . 18  |-  ( ( j  e.  Top  /\  z  e.  j  /\  y  e.  z )  ->  z  e.  ( ( nei `  j ) `
 { y } ) )
2218, 19, 20, 21syl3anc 1218 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  z  e.  ( ( nei `  j
) `  { y } ) )
23 simpr32 1079 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  z  C_  v
)
24 simpr1 994 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ~P u )
2524elpwid 3873 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  C_  u
)
264adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  u  e.  j )
27 elssuni 4124 . . . . . . . . . . . . . . . . . . 19  |-  ( u  e.  j  ->  u  C_ 
U. j )
2826, 27syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  u  C_  U. j
)
2925, 28sstrd 3369 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  C_  U. j
)
30 eqid 2443 . . . . . . . . . . . . . . . . . 18  |-  U. j  =  U. j
3130ssnei2 18723 . . . . . . . . . . . . . . . . 17  |-  ( ( ( j  e.  Top  /\  z  e.  ( ( nei `  j ) `
 { y } ) )  /\  (
z  C_  v  /\  v  C_  U. j ) )  ->  v  e.  ( ( nei `  j
) `  { y } ) )
3218, 22, 23, 29, 31syl22anc 1219 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ( ( nei `  j
) `  { y } ) )
33 simprr1 1036 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  u  C_  x )
3433adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  u  C_  x
)
3525, 34sstrd 3369 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  C_  x
)
36 selpw 3870 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  ~P x  <->  v  C_  x )
3735, 36sylibr 212 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ~P x )
3832, 37elind 3543 . . . . . . . . . . . . . . 15  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ( ( ( nei `  j
) `  { y } )  i^i  ~P x ) )
39 restabs 18772 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  Top  /\  v  C_  u  /\  u  e.  j )  ->  (
( jt  u )t  v )  =  ( jt  v ) )
4018, 25, 26, 39syl3anc 1218 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  ( ( jt  u )t  v )  =  ( jt  v ) )
41 simpr33 1080 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  ( ( jt  u )t  v )  e.  A
)
4240, 41eqeltrrd 2518 . . . . . . . . . . . . . . 15  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  ( jt  v )  e.  A )
4338, 42jca 532 . . . . . . . . . . . . . 14  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  (
v  e.  ~P u  /\  ( z  e.  j  /\  z  C_  u
)  /\  ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  ( v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x )  /\  ( jt  v )  e.  A ) )
44433exp2 1205 . . . . . . . . . . . . 13  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  (
v  e.  ~P u  ->  ( ( z  e.  j  /\  z  C_  u )  ->  (
( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A )  ->  ( v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x )  /\  ( jt  v )  e.  A ) ) ) ) )
4544imp 429 . . . . . . . . . . . 12  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  v  e.  ~P u )  -> 
( ( z  e.  j  /\  z  C_  u )  ->  (
( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A )  ->  ( v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x )  /\  ( jt  v )  e.  A ) ) ) )
4617, 45sylbid 215 . . . . . . . . . . 11  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  v  e.  ~P u )  -> 
( z  e.  ( jt  u )  ->  (
( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A )  ->  ( v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x )  /\  ( jt  v )  e.  A ) ) ) )
4746rexlimdv 2843 . . . . . . . . . 10  |-  ( ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  /\  v  e.  ~P u )  -> 
( E. z  e.  ( jt  u ) ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A )  ->  (
v  e.  ( ( ( nei `  j
) `  { y } )  i^i  ~P x )  /\  (
jt  v )  e.  A
) ) )
4847expimpd 603 . . . . . . . . 9  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  (
( v  e.  ~P u  /\  E. z  e.  ( jt  u ) ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A ) )  -> 
( v  e.  ( ( ( nei `  j
) `  { y } )  i^i  ~P x )  /\  (
jt  v )  e.  A
) ) )
4948reximdv2 2828 . . . . . . . 8  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  ( E. v  e.  ~P  u E. z  e.  ( jt  u ) ( y  e.  z  /\  z  C_  v  /\  ( ( jt  u )t  v )  e.  A )  ->  E. v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x ) ( jt  v )  e.  A
) )
5014, 49mpd 15 . . . . . . 7  |-  ( ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. 𝑛Locally  A ) ) )  ->  E. v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x ) ( jt  v )  e.  A
)
512, 50rexlimddv 2848 . . . . . 6  |-  ( ( j  e. Locally 𝑛Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  E. v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x ) ( jt  v )  e.  A
)
52513expb 1188 . . . . 5  |-  ( ( j  e. Locally 𝑛Locally  A  /\  (
x  e.  j  /\  y  e.  x )
)  ->  E. v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x ) ( jt  v )  e.  A
)
5352ralrimivva 2811 . . . 4  |-  ( j  e. Locally 𝑛Locally  A  ->  A. x  e.  j 
A. y  e.  x  E. v  e.  (
( ( nei `  j
) `  { y } )  i^i  ~P x ) ( jt  v )  e.  A )
54 isnlly 19076 . . . 4  |-  ( j  e. 𝑛Locally  A  <->  ( j  e. 
Top  /\  A. x  e.  j  A. y  e.  x  E. v  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x ) ( jt  v )  e.  A
) )
551, 53, 54sylanbrc 664 . . 3  |-  ( j  e. Locally 𝑛Locally  A  ->  j  e. 𝑛Locally  A )
5655ssriv 3363 . 2  |- Locally 𝑛Locally  A  C_ 𝑛Locally  A
57 nllyrest 19093 . . . . 5  |-  ( ( j  e. 𝑛Locally  A  /\  x  e.  j )  ->  (
jt  x )  e. 𝑛Locally  A )
5857adantl 466 . . . 4  |-  ( ( T.  /\  ( j  e. 𝑛Locally  A  /\  x  e.  j ) )  -> 
( jt  x )  e. 𝑛Locally  A )
59 nllytop 19080 . . . . . 6  |-  ( j  e. 𝑛Locally  A  ->  j  e.  Top )
6059ssriv 3363 . . . . 5  |- 𝑛Locally  A  C_  Top
6160a1i 11 . . . 4  |-  ( T. 
-> 𝑛Locally  A  C_  Top )
6258, 61restlly 19090 . . 3  |-  ( T. 
-> 𝑛Locally  A  C_ Locally 𝑛Locally  A )
6362trud 1378 . 2  |- 𝑛Locally  A  C_ Locally 𝑛Locally  A
6456, 63eqssi 3375 1  |- Locally 𝑛Locally  A  = 𝑛Locally  A
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369   T. wtru 1370    e. wcel 1756   A.wral 2718   E.wrex 2719    i^i cin 3330    C_ wss 3331   ~Pcpw 3863   {csn 3880   U.cuni 4094   ` cfv 5421  (class class class)co 6094   ↾t crest 14362   Topctop 18501   neicnei 18704  Locally clly 19071  𝑛Locally cnlly 19072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-ral 2723  df-rex 2724  df-reu 2725  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-om 6480  df-1st 6580  df-2nd 6581  df-recs 6835  df-rdg 6869  df-oadd 6927  df-er 7104  df-en 7314  df-fin 7317  df-fi 7664  df-rest 14364  df-topgen 14385  df-top 18506  df-bases 18508  df-topon 18509  df-nei 18705  df-lly 19073  df-nlly 19074
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator