MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyi Structured version   Visualization version   Unicode version

Theorem nllyi 20483
Description: The property of an n-locally  A topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyi  |-  ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  ->  E. u  e.  ( ( nei `  J
) `  { P } ) ( u 
C_  U  /\  ( Jt  u )  e.  A
) )
Distinct variable groups:    u, A    u, P    u, U    u, J

Proof of Theorem nllyi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnlly 20477 . . . 4  |-  ( J  e. 𝑛Locally  A  <->  ( J  e. 
Top  /\  A. x  e.  J  A. y  e.  x  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  A
) )
21simprbi 466 . . 3  |-  ( J  e. 𝑛Locally  A  ->  A. x  e.  J  A. y  e.  x  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  A
)
3 pweq 3953 . . . . . . 7  |-  ( x  =  U  ->  ~P x  =  ~P U
)
43ineq2d 3633 . . . . . 6  |-  ( x  =  U  ->  (
( ( nei `  J
) `  { y } )  i^i  ~P x )  =  ( ( ( nei `  J
) `  { y } )  i^i  ~P U ) )
54rexeqdv 2993 . . . . 5  |-  ( x  =  U  ->  ( E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  u )  e.  A  <->  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P U ) ( Jt  u )  e.  A
) )
65raleqbi1dv 2994 . . . 4  |-  ( x  =  U  ->  ( A. y  e.  x  E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  u )  e.  A  <->  A. y  e.  U  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P U ) ( Jt  u )  e.  A
) )
76rspccva 3148 . . 3  |-  ( ( A. x  e.  J  A. y  e.  x  E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  u )  e.  A  /\  U  e.  J )  ->  A. y  e.  U  E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P U ) ( Jt  u )  e.  A )
82, 7sylan 474 . 2  |-  ( ( J  e. 𝑛Locally  A  /\  U  e.  J )  ->  A. y  e.  U  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P U ) ( Jt  u )  e.  A
)
9 elin 3616 . . . . . . 7  |-  ( u  e.  ( ( ( nei `  J ) `
 { y } )  i^i  ~P U
)  <->  ( u  e.  ( ( nei `  J
) `  { y } )  /\  u  e.  ~P U ) )
10 sneq 3977 . . . . . . . . . 10  |-  ( y  =  P  ->  { y }  =  { P } )
1110fveq2d 5867 . . . . . . . . 9  |-  ( y  =  P  ->  (
( nei `  J
) `  { y } )  =  ( ( nei `  J
) `  { P } ) )
1211eleq2d 2513 . . . . . . . 8  |-  ( y  =  P  ->  (
u  e.  ( ( nei `  J ) `
 { y } )  <->  u  e.  (
( nei `  J
) `  { P } ) ) )
13 selpw 3957 . . . . . . . . 9  |-  ( u  e.  ~P U  <->  u  C_  U
)
1413a1i 11 . . . . . . . 8  |-  ( y  =  P  ->  (
u  e.  ~P U  <->  u 
C_  U ) )
1512, 14anbi12d 716 . . . . . . 7  |-  ( y  =  P  ->  (
( u  e.  ( ( nei `  J
) `  { y } )  /\  u  e.  ~P U )  <->  ( u  e.  ( ( nei `  J
) `  { P } )  /\  u  C_  U ) ) )
169, 15syl5bb 261 . . . . . 6  |-  ( y  =  P  ->  (
u  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P U )  <->  ( u  e.  ( ( nei `  J
) `  { P } )  /\  u  C_  U ) ) )
1716anbi1d 710 . . . . 5  |-  ( y  =  P  ->  (
( u  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P U )  /\  ( Jt  u )  e.  A
)  <->  ( ( u  e.  ( ( nei `  J ) `  { P } )  /\  u  C_  U )  /\  ( Jt  u )  e.  A
) ) )
18 anass 654 . . . . 5  |-  ( ( ( u  e.  ( ( nei `  J
) `  { P } )  /\  u  C_  U )  /\  ( Jt  u )  e.  A
)  <->  ( u  e.  ( ( nei `  J
) `  { P } )  /\  (
u  C_  U  /\  ( Jt  u )  e.  A
) ) )
1917, 18syl6bb 265 . . . 4  |-  ( y  =  P  ->  (
( u  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P U )  /\  ( Jt  u )  e.  A
)  <->  ( u  e.  ( ( nei `  J
) `  { P } )  /\  (
u  C_  U  /\  ( Jt  u )  e.  A
) ) ) )
2019rexbidv2 2896 . . 3  |-  ( y  =  P  ->  ( E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P U ) ( Jt  u )  e.  A  <->  E. u  e.  ( ( nei `  J
) `  { P } ) ( u 
C_  U  /\  ( Jt  u )  e.  A
) ) )
2120rspccva 3148 . 2  |-  ( ( A. y  e.  U  E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P U ) ( Jt  u )  e.  A  /\  P  e.  U )  ->  E. u  e.  ( ( nei `  J
) `  { P } ) ( u 
C_  U  /\  ( Jt  u )  e.  A
) )
228, 21stoic3 1659 1  |-  ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  ->  E. u  e.  ( ( nei `  J
) `  { P } ) ( u 
C_  U  /\  ( Jt  u )  e.  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886   A.wral 2736   E.wrex 2737    i^i cin 3402    C_ wss 3403   ~Pcpw 3950   {csn 3967   ` cfv 5581  (class class class)co 6288   ↾t crest 15312   Topctop 19910   neicnei 20106  𝑛Locally cnlly 20473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ral 2741  df-rex 2742  df-rab 2745  df-v 3046  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-br 4402  df-iota 5545  df-fv 5589  df-ov 6291  df-nlly 20475
This theorem is referenced by:  nlly2i  20484  llycmpkgen  20560
  Copyright terms: Public domain W3C validator