MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlly2i Structured version   Unicode version

Theorem nlly2i 19845
Description: Eliminate the neighborhood symbol from nllyi 19844. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nlly2i  |-  ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  ->  E. s  e.  ~P  U E. u  e.  J  ( P  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) )
Distinct variable groups:    u, s, A    P, s, u    U, s, u    J, s, u

Proof of Theorem nlly2i
StepHypRef Expression
1 nllyi 19844 . 2  |-  ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  ->  E. s  e.  ( ( nei `  J
) `  { P } ) ( s 
C_  U  /\  ( Jt  s )  e.  A
) )
2 simprrl 763 . . . . . 6  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  s  C_  U
)
3 selpw 4023 . . . . . 6  |-  ( s  e.  ~P U  <->  s  C_  U )
42, 3sylibr 212 . . . . 5  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  s  e.  ~P U )
5 simpl1 999 . . . . . . . 8  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  J  e. 𝑛Locally  A )
6 nllytop 19842 . . . . . . . 8  |-  ( J  e. 𝑛Locally  A  ->  J  e.  Top )
75, 6syl 16 . . . . . . 7  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  J  e.  Top )
8 simprl 755 . . . . . . 7  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  s  e.  ( ( nei `  J
) `  { P } ) )
9 neii2 19477 . . . . . . 7  |-  ( ( J  e.  Top  /\  s  e.  ( ( nei `  J ) `  { P } ) )  ->  E. u  e.  J  ( { P }  C_  u  /\  u  C_  s
) )
107, 8, 9syl2anc 661 . . . . . 6  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  E. u  e.  J  ( { P }  C_  u  /\  u  C_  s
) )
11 simprl 755 . . . . . . . . . 10  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U
)  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  /\  ( { P }  C_  u  /\  u  C_  s ) )  ->  { P }  C_  u
)
12 simpll3 1037 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U
)  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  /\  ( { P }  C_  u  /\  u  C_  s ) )  ->  P  e.  U )
13 snssg 4166 . . . . . . . . . . 11  |-  ( P  e.  U  ->  ( P  e.  u  <->  { P }  C_  u ) )
1412, 13syl 16 . . . . . . . . . 10  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U
)  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  /\  ( { P }  C_  u  /\  u  C_  s ) )  -> 
( P  e.  u  <->  { P }  C_  u
) )
1511, 14mpbird 232 . . . . . . . . 9  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U
)  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  /\  ( { P }  C_  u  /\  u  C_  s ) )  ->  P  e.  u )
16 simprr 756 . . . . . . . . 9  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U
)  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  /\  ( { P }  C_  u  /\  u  C_  s ) )  ->  u  C_  s )
17 simprrr 764 . . . . . . . . . 10  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  ( Jt  s )  e.  A )
1817adantr 465 . . . . . . . . 9  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U
)  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  /\  ( { P }  C_  u  /\  u  C_  s ) )  -> 
( Jt  s )  e.  A )
1915, 16, 183jca 1176 . . . . . . . 8  |-  ( ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U
)  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  /\  ( { P }  C_  u  /\  u  C_  s ) )  -> 
( P  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) )
2019ex 434 . . . . . . 7  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  ( ( { P }  C_  u  /\  u  C_  s )  ->  ( P  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )
2120reximdv 2941 . . . . . 6  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  ( E. u  e.  J  ( { P }  C_  u  /\  u  C_  s )  ->  E. u  e.  J  ( P  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )
2210, 21mpd 15 . . . . 5  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  E. u  e.  J  ( P  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) )
234, 22jca 532 . . . 4  |-  ( ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  /\  ( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) ) )  ->  ( s  e. 
~P U  /\  E. u  e.  J  ( P  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A
) ) )
2423ex 434 . . 3  |-  ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  ->  (
( s  e.  ( ( nei `  J
) `  { P } )  /\  (
s  C_  U  /\  ( Jt  s )  e.  A ) )  -> 
( s  e.  ~P U  /\  E. u  e.  J  ( P  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) ) )
2524reximdv2 2938 . 2  |-  ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  ->  ( E. s  e.  (
( nei `  J
) `  { P } ) ( s 
C_  U  /\  ( Jt  s )  e.  A
)  ->  E. s  e.  ~P  U E. u  e.  J  ( P  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) ) )
261, 25mpd 15 1  |-  ( ( J  e. 𝑛Locally  A  /\  U  e.  J  /\  P  e.  U )  ->  E. s  e.  ~P  U E. u  e.  J  ( P  e.  u  /\  u  C_  s  /\  ( Jt  s )  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    e. wcel 1767   E.wrex 2818    C_ wss 3481   ~Pcpw 4016   {csn 4033   ` cfv 5594  (class class class)co 6295   ↾t crest 14693   Topctop 19263   neicnei 19466  𝑛Locally cnlly 19834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-top 19268  df-nei 19467  df-nlly 19836
This theorem is referenced by:  restnlly  19851  nllyrest  19855  nllyidm  19858  cldllycmp  19864  txnlly  20006  txkgen  20021  xkococnlem  20028  conpcon  28496  cvmliftmolem2  28543  cvmlift3lem8  28587
  Copyright terms: Public domain W3C validator