MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlimon Structured version   Unicode version

Theorem nlimon 6685
Description: Two ways to express the class of non-limit ordinal numbers. Part of Definition 7.27 of [TakeutiZaring] p. 42, who use the symbol KI for this class. (Contributed by NM, 1-Nov-2004.)
Assertion
Ref Expression
nlimon  |-  { x  e.  On  |  ( x  =  (/)  \/  E. y  e.  On  x  =  suc  y ) }  =  { x  e.  On  |  -.  Lim  x }
Distinct variable group:    x, y

Proof of Theorem nlimon
StepHypRef Expression
1 eloni 4897 . . 3  |-  ( x  e.  On  ->  Ord  x )
2 dflim3 6681 . . . . 5  |-  ( Lim  x  <->  ( Ord  x  /\  -.  ( x  =  (/)  \/  E. y  e.  On  x  =  suc  y ) ) )
32baib 903 . . . 4  |-  ( Ord  x  ->  ( Lim  x 
<->  -.  ( x  =  (/)  \/  E. y  e.  On  x  =  suc  y ) ) )
43con2bid 329 . . 3  |-  ( Ord  x  ->  ( (
x  =  (/)  \/  E. y  e.  On  x  =  suc  y )  <->  -.  Lim  x
) )
51, 4syl 16 . 2  |-  ( x  e.  On  ->  (
( x  =  (/)  \/ 
E. y  e.  On  x  =  suc  y )  <->  -.  Lim  x ) )
65rabbiia 3098 1  |-  { x  e.  On  |  ( x  =  (/)  \/  E. y  e.  On  x  =  suc  y ) }  =  { x  e.  On  |  -.  Lim  x }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    \/ wo 368    = wceq 1395    e. wcel 1819   E.wrex 2808   {crab 2811   (/)c0 3793   Ord word 4886   Oncon0 4887   Lim wlim 4888   suc csuc 4889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-tr 4551  df-eprel 4800  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator