HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nlelchi Structured version   Unicode version

Theorem nlelchi 25644
Description: The null space of a continuous linear functional is a closed subspace. Remark 3.8 of [Beran] p. 103. (Contributed by NM, 11-Feb-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nlelch.1  |-  T  e. 
LinFn
nlelch.2  |-  T  e. 
ConFn
Assertion
Ref Expression
nlelchi  |-  ( null `  T )  e.  CH

Proof of Theorem nlelchi
Dummy variables  f  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlelch.1 . . 3  |-  T  e. 
LinFn
21nlelshi 25643 . 2  |-  ( null `  T )  e.  SH
3 vex 3081 . . . . . 6  |-  x  e. 
_V
43hlimveci 24771 . . . . 5  |-  ( f 
~~>v  x  ->  x  e.  ~H )
54adantl 466 . . . 4  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  x  e.  ~H )
6 eqid 2454 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
76cnfldhaus 20506 . . . . . 6  |-  ( TopOpen ` fld )  e.  Haus
87a1i 11 . . . . 5  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( TopOpen
` fld
)  e.  Haus )
9 eqid 2454 . . . . . . . . . 10  |-  <. <.  +h  ,  .h  >. ,  normh >.  =  <. <.  +h  ,  .h  >. ,  normh >.
10 eqid 2454 . . . . . . . . . . 11  |-  ( normh  o. 
-h  )  =  (
normh  o.  -h  )
119, 10hhims 24753 . . . . . . . . . 10  |-  ( normh  o. 
-h  )  =  (
IndMet `  <. <.  +h  ,  .h  >. ,  normh >. )
12 eqid 2454 . . . . . . . . . 10  |-  ( MetOpen `  ( normh  o.  -h  )
)  =  ( MetOpen `  ( normh  o.  -h  )
)
139, 11, 12hhlm 24780 . . . . . . . . 9  |-  ~~>v  =  ( ( ~~> t `  ( MetOpen
`  ( normh  o.  -h  ) ) )  |`  ( ~H  ^m  NN ) )
14 resss 5245 . . . . . . . . 9  |-  ( ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) )  |`  ( ~H  ^m  NN ) ) 
C_  ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) )
1513, 14eqsstri 3497 . . . . . . . 8  |-  ~~>v  C_  ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) )
1615ssbri 4445 . . . . . . 7  |-  ( f 
~~>v  x  ->  f ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) ) x )
1716adantl 466 . . . . . 6  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  f
( ~~> t `  ( MetOpen
`  ( normh  o.  -h  ) ) ) x )
18 nlelch.2 . . . . . . . 8  |-  T  e. 
ConFn
1910, 12, 6hhcnf 25488 . . . . . . . 8  |-  ConFn  =  ( ( MetOpen `  ( normh  o. 
-h  ) )  Cn  ( TopOpen ` fld ) )
2018, 19eleqtri 2540 . . . . . . 7  |-  T  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( TopOpen ` fld ) )
2120a1i 11 . . . . . 6  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  T  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( TopOpen ` fld ) ) )
2217, 21lmcn 19051 . . . . 5  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( T  o.  f )
( ~~> t `  ( TopOpen
` fld
) ) ( T `
 x ) )
231lnfnfi 25624 . . . . . . . . . 10  |-  T : ~H
--> CC
24 ffvelrn 5953 . . . . . . . . . . 11  |-  ( ( f : NN --> ( null `  T )  /\  n  e.  NN )  ->  (
f `  n )  e.  ( null `  T
) )
2524adantlr 714 . . . . . . . . . 10  |-  ( ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  /\  n  e.  NN )  ->  ( f `  n )  e.  (
null `  T )
)
26 elnlfn2 25512 . . . . . . . . . 10  |-  ( ( T : ~H --> CC  /\  ( f `  n
)  e.  ( null `  T ) )  -> 
( T `  (
f `  n )
)  =  0 )
2723, 25, 26sylancr 663 . . . . . . . . 9  |-  ( ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  /\  n  e.  NN )  ->  ( T `  ( f `  n
) )  =  0 )
28 fvco3 5880 . . . . . . . . . 10  |-  ( ( f : NN --> ( null `  T )  /\  n  e.  NN )  ->  (
( T  o.  f
) `  n )  =  ( T `  ( f `  n
) ) )
2928adantlr 714 . . . . . . . . 9  |-  ( ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  /\  n  e.  NN )  ->  ( ( T  o.  f ) `  n )  =  ( T `  ( f `
 n ) ) )
30 c0ex 9495 . . . . . . . . . . 11  |-  0  e.  _V
3130fvconst2 6045 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
( NN  X.  {
0 } ) `  n )  =  0 )
3231adantl 466 . . . . . . . . 9  |-  ( ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  /\  n  e.  NN )  ->  ( ( NN 
X.  { 0 } ) `  n )  =  0 )
3327, 29, 323eqtr4d 2505 . . . . . . . 8  |-  ( ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  /\  n  e.  NN )  ->  ( ( T  o.  f ) `  n )  =  ( ( NN  X.  {
0 } ) `  n ) )
3433ralrimiva 2830 . . . . . . 7  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  A. n  e.  NN  ( ( T  o.  f ) `  n )  =  ( ( NN  X.  {
0 } ) `  n ) )
35 ffn 5670 . . . . . . . . . 10  |-  ( T : ~H --> CC  ->  T  Fn  ~H )
3623, 35ax-mp 5 . . . . . . . . 9  |-  T  Fn  ~H
37 simpl 457 . . . . . . . . . 10  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  f : NN --> ( null `  T
) )
382shssii 24794 . . . . . . . . . 10  |-  ( null `  T )  C_  ~H
39 fss 5678 . . . . . . . . . 10  |-  ( ( f : NN --> ( null `  T )  /\  ( null `  T )  C_  ~H )  ->  f : NN --> ~H )
4037, 38, 39sylancl 662 . . . . . . . . 9  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  f : NN --> ~H )
41 fnfco 5688 . . . . . . . . 9  |-  ( ( T  Fn  ~H  /\  f : NN --> ~H )  ->  ( T  o.  f
)  Fn  NN )
4236, 40, 41sylancr 663 . . . . . . . 8  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( T  o.  f )  Fn  NN )
4330fconst 5707 . . . . . . . . 9  |-  ( NN 
X.  { 0 } ) : NN --> { 0 }
44 ffn 5670 . . . . . . . . 9  |-  ( ( NN  X.  { 0 } ) : NN --> { 0 }  ->  ( NN  X.  { 0 } )  Fn  NN )
4543, 44ax-mp 5 . . . . . . . 8  |-  ( NN 
X.  { 0 } )  Fn  NN
46 eqfnfv 5909 . . . . . . . 8  |-  ( ( ( T  o.  f
)  Fn  NN  /\  ( NN  X.  { 0 } )  Fn  NN )  ->  ( ( T  o.  f )  =  ( NN  X.  {
0 } )  <->  A. n  e.  NN  ( ( T  o.  f ) `  n )  =  ( ( NN  X.  {
0 } ) `  n ) ) )
4742, 45, 46sylancl 662 . . . . . . 7  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  (
( T  o.  f
)  =  ( NN 
X.  { 0 } )  <->  A. n  e.  NN  ( ( T  o.  f ) `  n
)  =  ( ( NN  X.  { 0 } ) `  n
) ) )
4834, 47mpbird 232 . . . . . 6  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( T  o.  f )  =  ( NN  X.  { 0 } ) )
496cnfldtopon 20504 . . . . . . . 8  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
5049a1i 11 . . . . . . 7  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( TopOpen
` fld
)  e.  (TopOn `  CC ) )
51 0cnd 9494 . . . . . . 7  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  0  e.  CC )
52 1zzd 10792 . . . . . . 7  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  1  e.  ZZ )
53 nnuz 11011 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
5453lmconst 19007 . . . . . . 7  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  0  e.  CC  /\  1  e.  ZZ )  ->  ( NN  X.  { 0 } ) ( ~~> t `  ( TopOpen ` fld ) ) 0 )
5550, 51, 52, 54syl3anc 1219 . . . . . 6  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( NN  X.  { 0 } ) ( ~~> t `  ( TopOpen ` fld ) ) 0 )
5648, 55eqbrtrd 4423 . . . . 5  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( T  o.  f )
( ~~> t `  ( TopOpen
` fld
) ) 0 )
578, 22, 56lmmo 19126 . . . 4  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  ( T `  x )  =  0 )
58 elnlfn 25511 . . . . 5  |-  ( T : ~H --> CC  ->  ( x  e.  ( null `  T )  <->  ( x  e.  ~H  /\  ( T `
 x )  =  0 ) ) )
5923, 58ax-mp 5 . . . 4  |-  ( x  e.  ( null `  T
)  <->  ( x  e. 
~H  /\  ( T `  x )  =  0 ) )
605, 57, 59sylanbrc 664 . . 3  |-  ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  x  e.  ( null `  T
) )
6160gen2 1593 . 2  |-  A. f A. x ( ( f : NN --> ( null `  T )  /\  f  ~~>v  x )  ->  x  e.  ( null `  T
) )
62 isch2 24805 . 2  |-  ( (
null `  T )  e.  CH  <->  ( ( null `  T )  e.  SH  /\ 
A. f A. x
( ( f : NN --> ( null `  T
)  /\  f  ~~>v  x )  ->  x  e.  ( null `  T )
) ) )
632, 61, 62mpbir2an 911 1  |-  ( null `  T )  e.  CH
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1368    = wceq 1370    e. wcel 1758   A.wral 2799    C_ wss 3439   {csn 3988   <.cop 3994   class class class wbr 4403    X. cxp 4949    |` cres 4953    o. ccom 4955    Fn wfn 5524   -->wf 5525   ` cfv 5529  (class class class)co 6203    ^m cmap 7327   CCcc 9395   0cc0 9397   1c1 9398   NNcn 10437   ZZcz 10761   TopOpenctopn 14483   MetOpencmopn 17941  ℂfldccnfld 17953  TopOnctopon 18641    Cn ccn 18970   ~~> tclm 18972   Hauscha 19054   ~Hchil 24500    +h cva 24501    .h csm 24502   normhcno 24504    -h cmv 24506    ~~>v chli 24508   SHcsh 24509   CHcch 24510   nullcnl 24533   ConFnccnfn 24534   LinFnclf 24535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474  ax-pre-sup 9475  ax-addf 9476  ax-mulf 9477  ax-hilex 24580  ax-hfvadd 24581  ax-hvcom 24582  ax-hvass 24583  ax-hv0cl 24584  ax-hvaddid 24585  ax-hfvmul 24586  ax-hvmulid 24587  ax-hvmulass 24588  ax-hvdistr1 24589  ax-hvdistr2 24590  ax-hvmul0 24591  ax-hfi 24660  ax-his1 24663  ax-his2 24664  ax-his3 24665  ax-his4 24666
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-oadd 7037  df-er 7214  df-map 7329  df-pm 7330  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-sup 7806  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-div 10109  df-nn 10438  df-2 10495  df-3 10496  df-4 10497  df-5 10498  df-6 10499  df-7 10500  df-8 10501  df-9 10502  df-10 10503  df-n0 10695  df-z 10762  df-dec 10871  df-uz 10977  df-q 11069  df-rp 11107  df-xneg 11204  df-xadd 11205  df-xmul 11206  df-icc 11422  df-fz 11559  df-seq 11928  df-exp 11987  df-cj 12710  df-re 12711  df-im 12712  df-sqr 12846  df-abs 12847  df-struct 14298  df-ndx 14299  df-slot 14300  df-base 14301  df-plusg 14374  df-mulr 14375  df-starv 14376  df-tset 14380  df-ple 14381  df-ds 14383  df-unif 14384  df-rest 14484  df-topn 14485  df-topgen 14505  df-psmet 17944  df-xmet 17945  df-met 17946  df-bl 17947  df-mopn 17948  df-cnfld 17954  df-top 18645  df-bases 18647  df-topon 18648  df-topsp 18649  df-cn 18973  df-cnp 18974  df-lm 18975  df-haus 19061  df-xms 20037  df-ms 20038  df-grpo 23857  df-gid 23858  df-ginv 23859  df-gdiv 23860  df-ablo 23948  df-vc 24103  df-nv 24149  df-va 24152  df-ba 24153  df-sm 24154  df-0v 24155  df-vs 24156  df-nmcv 24157  df-ims 24158  df-hnorm 24549  df-hvsub 24552  df-hlim 24553  df-sh 24788  df-ch 24803  df-nlfn 25429  df-cnfn 25430  df-lnfn 25431
This theorem is referenced by:  riesz3i  25645
  Copyright terms: Public domain W3C validator