MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngptgp Structured version   Unicode version

Theorem ngptgp 20181
Description: A normed abelian group is a topological group (with the topology induced by the metric induced by the norm). (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
ngptgp  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  G  e.  TopGrp )

Proof of Theorem ngptgp
Dummy variables  u  r  v  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ngpgrp 20150 . . 3  |-  ( G  e. NrmGrp  ->  G  e.  Grp )
21adantr 462 . 2  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  G  e.  Grp )
3 ngpms 20151 . . . 4  |-  ( G  e. NrmGrp  ->  G  e.  MetSp )
43adantr 462 . . 3  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  G  e.  MetSp )
5 mstps 19989 . . 3  |-  ( G  e.  MetSp  ->  G  e.  TopSp
)
64, 5syl 16 . 2  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  G  e.  TopSp )
7 eqid 2441 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
8 eqid 2441 . . . . . 6  |-  ( -g `  G )  =  (
-g `  G )
97, 8grpsubf 15598 . . . . 5  |-  ( G  e.  Grp  ->  ( -g `  G ) : ( ( Base `  G
)  X.  ( Base `  G ) ) --> (
Base `  G )
)
102, 9syl 16 . . . 4  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  ( -g `  G ) : ( ( Base `  G
)  X.  ( Base `  G ) ) --> (
Base `  G )
)
11 rphalfcl 11011 . . . . . . . 8  |-  ( z  e.  RR+  ->  ( z  /  2 )  e.  RR+ )
1211adantl 463 . . . . . . 7  |-  ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  ->  (
z  /  2 )  e.  RR+ )
13 simplll 752 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( G  e. NrmGrp  /\  G  e.  Abel ) )
1413, 4syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  ->  G  e.  MetSp )
15 simpllr 753 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) ) )
1615simpld 456 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  ->  x  e.  ( Base `  G ) )
17 simprl 750 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  ->  u  e.  ( Base `  G ) )
18 eqid 2441 . . . . . . . . . . . . 13  |-  ( dist `  G )  =  (
dist `  G )
197, 18mscl 19995 . . . . . . . . . . . 12  |-  ( ( G  e.  MetSp  /\  x  e.  ( Base `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( x
( dist `  G )
u )  e.  RR )
2014, 16, 17, 19syl3anc 1213 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( x ( dist `  G ) u )  e.  RR )
2115simprd 460 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
y  e.  ( Base `  G ) )
22 simprr 751 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
v  e.  ( Base `  G ) )
237, 18mscl 19995 . . . . . . . . . . . 12  |-  ( ( G  e.  MetSp  /\  y  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )
)  ->  ( y
( dist `  G )
v )  e.  RR )
2414, 21, 22, 23syl3anc 1213 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( y ( dist `  G ) v )  e.  RR )
25 rpre 10993 . . . . . . . . . . . 12  |-  ( z  e.  RR+  ->  z  e.  RR )
2625ad2antlr 721 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
z  e.  RR )
27 lt2halves 10555 . . . . . . . . . . 11  |-  ( ( ( x ( dist `  G ) u )  e.  RR  /\  (
y ( dist `  G
) v )  e.  RR  /\  z  e.  RR )  ->  (
( ( x (
dist `  G )
u )  <  (
z  /  2 )  /\  ( y (
dist `  G )
v )  <  (
z  /  2 ) )  ->  ( (
x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  <  z ) )
2820, 24, 26, 27syl3anc 1213 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( dist `  G
) u )  < 
( z  /  2
)  /\  ( y
( dist `  G )
v )  <  (
z  /  2 ) )  ->  ( (
x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  <  z ) )
2913, 2syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  ->  G  e.  Grp )
307, 8grpsubcl 15599 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x ( -g `  G
) y )  e.  ( Base `  G
) )
3129, 16, 21, 30syl3anc 1213 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( x ( -g `  G ) y )  e.  ( Base `  G
) )
327, 8grpsubcl 15599 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) )  ->  (
u ( -g `  G
) v )  e.  ( Base `  G
) )
3329, 17, 22, 32syl3anc 1213 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( u ( -g `  G ) v )  e.  ( Base `  G
) )
347, 8grpsubcl 15599 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
u ( -g `  G
) y )  e.  ( Base `  G
) )
3529, 17, 21, 34syl3anc 1213 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( u ( -g `  G ) y )  e.  ( Base `  G
) )
367, 18mstri 20003 . . . . . . . . . . . . 13  |-  ( ( G  e.  MetSp  /\  (
( x ( -g `  G ) y )  e.  ( Base `  G
)  /\  ( u
( -g `  G ) v )  e.  (
Base `  G )  /\  ( u ( -g `  G ) y )  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  <_  ( ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) y ) )  +  ( ( u ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) ) ) )
3714, 31, 33, 35, 36syl13anc 1215 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  <_  ( ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) y ) )  +  ( ( u ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) ) ) )
3813simpld 456 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  ->  G  e. NrmGrp )
397, 8, 18ngpsubcan 20164 . . . . . . . . . . . . . 14  |-  ( ( G  e. NrmGrp  /\  (
x  e.  ( Base `  G )  /\  u  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  ->  (
( x ( -g `  G ) y ) ( dist `  G
) ( u (
-g `  G )
y ) )  =  ( x ( dist `  G ) u ) )
4038, 16, 17, 21, 39syl13anc 1215 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) y ) )  =  ( x (
dist `  G )
u ) )
41 eqid 2441 . . . . . . . . . . . . . . . . 17  |-  ( +g  `  G )  =  ( +g  `  G )
42 eqid 2441 . . . . . . . . . . . . . . . . 17  |-  ( invg `  G )  =  ( invg `  G )
437, 41, 42, 8grpsubval 15574 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
u ( -g `  G
) y )  =  ( u ( +g  `  G ) ( ( invg `  G
) `  y )
) )
4417, 21, 43syl2anc 656 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( u ( -g `  G ) y )  =  ( u ( +g  `  G ) ( ( invg `  G ) `  y
) ) )
457, 41, 42, 8grpsubval 15574 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) )  ->  (
u ( -g `  G
) v )  =  ( u ( +g  `  G ) ( ( invg `  G
) `  v )
) )
4645adantl 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( u ( -g `  G ) v )  =  ( u ( +g  `  G ) ( ( invg `  G ) `  v
) ) )
4744, 46oveq12d 6108 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( u (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  =  ( ( u ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ( dist `  G
) ( u ( +g  `  G ) ( ( invg `  G ) `  v
) ) ) )
487, 42grpinvcl 15576 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  y  e.  ( Base `  G ) )  -> 
( ( invg `  G ) `  y
)  e.  ( Base `  G ) )
4929, 21, 48syl2anc 656 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( invg `  G ) `  y
)  e.  ( Base `  G ) )
507, 42grpinvcl 15576 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  v  e.  ( Base `  G ) )  -> 
( ( invg `  G ) `  v
)  e.  ( Base `  G ) )
5129, 22, 50syl2anc 656 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( invg `  G ) `  v
)  e.  ( Base `  G ) )
527, 41, 18ngplcan 20161 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  (
( ( invg `  G ) `  y
)  e.  ( Base `  G )  /\  (
( invg `  G ) `  v
)  e.  ( Base `  G )  /\  u  e.  ( Base `  G
) ) )  -> 
( ( u ( +g  `  G ) ( ( invg `  G ) `  y
) ) ( dist `  G ) ( u ( +g  `  G
) ( ( invg `  G ) `
 v ) ) )  =  ( ( ( invg `  G ) `  y
) ( dist `  G
) ( ( invg `  G ) `
 v ) ) )
5313, 49, 51, 17, 52syl13anc 1215 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( u ( +g  `  G ) ( ( invg `  G ) `  y
) ) ( dist `  G ) ( u ( +g  `  G
) ( ( invg `  G ) `
 v ) ) )  =  ( ( ( invg `  G ) `  y
) ( dist `  G
) ( ( invg `  G ) `
 v ) ) )
547, 42, 18ngpinvds 20163 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  (
y  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( invg `  G ) `
 y ) (
dist `  G )
( ( invg `  G ) `  v
) )  =  ( y ( dist `  G
) v ) )
5513, 21, 22, 54syl12anc 1211 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( invg `  G ) `
 y ) (
dist `  G )
( ( invg `  G ) `  v
) )  =  ( y ( dist `  G
) v ) )
5647, 53, 553eqtrd 2477 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( u (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  =  ( y (
dist `  G )
v ) )
5740, 56oveq12d 6108 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) y ) )  +  ( ( u ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) ) )  =  ( ( x ( dist `  G ) u )  +  ( y (
dist `  G )
v ) ) )
5837, 57breqtrd 4313 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  <_  ( ( x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) ) )
597, 18mscl 19995 . . . . . . . . . . . . 13  |-  ( ( G  e.  MetSp  /\  (
x ( -g `  G
) y )  e.  ( Base `  G
)  /\  ( u
( -g `  G ) v )  e.  (
Base `  G )
)  ->  ( (
x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  e.  RR )
6014, 31, 33, 59syl3anc 1213 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  e.  RR )
6120, 24readdcld 9409 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x (
dist `  G )
u )  +  ( y ( dist `  G
) v ) )  e.  RR )
62 lelttr 9461 . . . . . . . . . . . 12  |-  ( ( ( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  e.  RR  /\  (
( x ( dist `  G ) u )  +  ( y (
dist `  G )
v ) )  e.  RR  /\  z  e.  RR )  ->  (
( ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  <_  ( (
x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  /\  ( ( x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  <  z )  ->  ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  <  z ) )
6360, 61, 26, 62syl3anc 1213 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  <_  ( (
x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  /\  ( ( x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  <  z )  ->  ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  <  z ) )
6458, 63mpand 670 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  <  z  -> 
( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  <  z ) )
6528, 64syld 44 . . . . . . . . 9  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( dist `  G
) u )  < 
( z  /  2
)  /\  ( y
( dist `  G )
v )  <  (
z  /  2 ) )  ->  ( (
x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  <  z ) )
6616, 17ovresd 6230 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( x ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) u )  =  ( x ( dist `  G
) u ) )
6766breq1d 4299 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) u )  < 
( z  /  2
)  <->  ( x (
dist `  G )
u )  <  (
z  /  2 ) ) )
6821, 22ovresd 6230 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  =  ( y ( dist `  G
) v ) )
6968breq1d 4299 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( y ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) v )  < 
( z  /  2
)  <->  ( y (
dist `  G )
v )  <  (
z  /  2 ) ) )
7067, 69anbi12d 705 . . . . . . . . 9  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) u )  < 
( z  /  2
)  /\  ( y
( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) v )  < 
( z  /  2
) )  <->  ( (
x ( dist `  G
) u )  < 
( z  /  2
)  /\  ( y
( dist `  G )
v )  <  (
z  /  2 ) ) ) )
7131, 33ovresd 6230 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y ) ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) ( u ( -g `  G ) v ) )  =  ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) ) )
7271breq1d 4299 . . . . . . . . 9  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z  <->  ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  <  z ) )
7365, 70, 723imtr4d 268 . . . . . . . 8  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) u )  < 
( z  /  2
)  /\  ( y
( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) v )  < 
( z  /  2
) )  ->  (
( x ( -g `  G ) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )
7473ralrimivva 2806 . . . . . . 7  |-  ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  ->  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  ( z  /  2 )  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  (
z  /  2 ) )  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )
75 breq2 4293 . . . . . . . . . . 11  |-  ( r  =  ( z  / 
2 )  ->  (
( x ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) u )  <  r  <->  ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  ( z  /  2 ) ) )
76 breq2 4293 . . . . . . . . . . 11  |-  ( r  =  ( z  / 
2 )  ->  (
( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r  <->  ( y ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) v )  <  ( z  /  2 ) ) )
7775, 76anbi12d 705 . . . . . . . . . 10  |-  ( r  =  ( z  / 
2 )  ->  (
( ( x ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) u )  < 
r  /\  ( y
( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) v )  < 
r )  <->  ( (
x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  ( z  /  2 )  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  (
z  /  2 ) ) ) )
7877imbi1d 317 . . . . . . . . 9  |-  ( r  =  ( z  / 
2 )  ->  (
( ( ( x ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) u )  < 
r  /\  ( y
( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) v )  < 
r )  ->  (
( x ( -g `  G ) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z )  <->  ( (
( x ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) u )  <  (
z  /  2 )  /\  ( y ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) v )  < 
( z  /  2
) )  ->  (
( x ( -g `  G ) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) ) )
79782ralbidv 2755 . . . . . . . 8  |-  ( r  =  ( z  / 
2 )  ->  ( A. u  e.  ( Base `  G ) A. v  e.  ( Base `  G ) ( ( ( x ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z )  <->  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  ( z  /  2 )  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  (
z  /  2 ) )  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) ) )
8079rspcev 3070 . . . . . . 7  |-  ( ( ( z  /  2
)  e.  RR+  /\  A. u  e.  ( Base `  G ) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  ( z  /  2 )  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  (
z  /  2 ) )  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )  ->  E. r  e.  RR+  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )
8112, 74, 80syl2anc 656 . . . . . 6  |-  ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  ->  E. r  e.  RR+  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )
8281ralrimiva 2797 . . . . 5  |-  ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) ) )  ->  A. z  e.  RR+  E. r  e.  RR+  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )
8382ralrimivva 2806 . . . 4  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  A. x  e.  ( Base `  G
) A. y  e.  ( Base `  G
) A. z  e.  RR+  E. r  e.  RR+  A. u  e.  ( Base `  G ) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )
84 msxms 19988 . . . . . 6  |-  ( G  e.  MetSp  ->  G  e.  *MetSp )
85 eqid 2441 . . . . . . 7  |-  ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) )  =  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) )
867, 85xmsxmet 19990 . . . . . 6  |-  ( G  e.  *MetSp  ->  (
( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) )  e.  ( *Met `  ( Base `  G
) ) )
874, 84, 863syl 20 . . . . 5  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  (
( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) )  e.  ( *Met `  ( Base `  G
) ) )
88 eqid 2441 . . . . . 6  |-  ( MetOpen `  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) )  =  (
MetOpen `  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) )
8988, 88, 88txmetcn 20082 . . . . 5  |-  ( ( ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) )  e.  ( *Met `  ( Base `  G ) )  /\  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) )  e.  ( *Met `  ( Base `  G ) )  /\  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) )  e.  ( *Met `  ( Base `  G ) ) )  ->  ( ( -g `  G )  e.  ( ( ( MetOpen `  (
( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) )  tX  ( MetOpen `  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ) )  Cn  ( MetOpen `  ( ( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) ) )  <->  ( ( -g `  G ) : ( ( Base `  G
)  X.  ( Base `  G ) ) --> (
Base `  G )  /\  A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) A. z  e.  RR+  E. r  e.  RR+  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) ) ) )
9087, 87, 87, 89syl3anc 1213 . . . 4  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  (
( -g `  G )  e.  ( ( (
MetOpen `  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) ) 
tX  ( MetOpen `  (
( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) ) )  Cn  ( MetOpen
`  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) ) )  <->  ( ( -g `  G ) : ( ( Base `  G
)  X.  ( Base `  G ) ) --> (
Base `  G )  /\  A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) A. z  e.  RR+  E. r  e.  RR+  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) ) ) )
9110, 83, 90mpbir2and 908 . . 3  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  ( -g `  G )  e.  ( ( ( MetOpen `  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) )  tX  ( MetOpen
`  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) ) )  Cn  ( MetOpen `  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ) ) )
92 eqid 2441 . . . . . . 7  |-  ( TopOpen `  G )  =  (
TopOpen `  G )
9392, 7, 85mstopn 19986 . . . . . 6  |-  ( G  e.  MetSp  ->  ( TopOpen `  G )  =  (
MetOpen `  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) ) )
944, 93syl 16 . . . . 5  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  ( TopOpen
`  G )  =  ( MetOpen `  ( ( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) ) )
9594, 94oveq12d 6108 . . . 4  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  (
( TopOpen `  G )  tX  ( TopOpen `  G )
)  =  ( (
MetOpen `  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) ) 
tX  ( MetOpen `  (
( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) ) ) )
9695, 94oveq12d 6108 . . 3  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  (
( ( TopOpen `  G
)  tX  ( TopOpen `  G ) )  Cn  ( TopOpen `  G )
)  =  ( ( ( MetOpen `  ( ( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) )  tX  ( MetOpen `  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ) )  Cn  ( MetOpen `  ( ( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) ) ) )
9791, 96eleqtrrd 2518 . 2  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  ( -g `  G )  e.  ( ( ( TopOpen `  G )  tX  ( TopOpen
`  G ) )  Cn  ( TopOpen `  G
) ) )
9892, 8istgp2 19621 . 2  |-  ( G  e.  TopGrp 
<->  ( G  e.  Grp  /\  G  e.  TopSp  /\  ( -g `  G )  e.  ( ( ( TopOpen `  G )  tX  ( TopOpen
`  G ) )  Cn  ( TopOpen `  G
) ) ) )
992, 6, 97, 98syl3anbrc 1167 1  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  G  e.  TopGrp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713   E.wrex 2714   class class class wbr 4289    X. cxp 4834    |` cres 4838   -->wf 5411   ` cfv 5415  (class class class)co 6090   RRcr 9277    + caddc 9281    < clt 9414    <_ cle 9415    / cdiv 9989   2c2 10367   RR+crp 10987   Basecbs 14170   +g cplusg 14234   distcds 14243   TopOpenctopn 14356   Grpcgrp 15406   invgcminusg 15407   -gcsg 15409   Abelcabel 16271   *Metcxmt 17760   MetOpencmopn 17765   TopSpctps 18460    Cn ccn 18787    tX ctx 19092   TopGrpctgp 19601   *MetSpcxme 19851   MetSpcmt 19852  NrmGrpcngp 20129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-icc 11303  df-fz 11434  df-fzo 11545  df-seq 11803  df-hash 12100  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-plusf 15412  df-submnd 15461  df-grp 15538  df-minusg 15539  df-sbg 15540  df-mulg 15541  df-cntz 15828  df-cmn 16272  df-abl 16273  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-top 18462  df-bases 18464  df-topon 18465  df-topsp 18466  df-cn 18790  df-cnp 18791  df-tx 19094  df-hmeo 19287  df-tmd 19602  df-tgp 19603  df-xms 19854  df-ms 19855  df-tms 19856  df-nm 20134  df-ngp 20135
This theorem is referenced by:  nrgtgp  20212  nlmtlm  20233
  Copyright terms: Public domain W3C validator