MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngptgp Structured version   Unicode version

Theorem ngptgp 21016
Description: A normed abelian group is a topological group (with the topology induced by the metric induced by the norm). (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
ngptgp  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  G  e.  TopGrp )

Proof of Theorem ngptgp
Dummy variables  u  r  v  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ngpgrp 20985 . . 3  |-  ( G  e. NrmGrp  ->  G  e.  Grp )
21adantr 465 . 2  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  G  e.  Grp )
3 ngpms 20986 . . . 4  |-  ( G  e. NrmGrp  ->  G  e.  MetSp )
43adantr 465 . . 3  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  G  e.  MetSp )
5 mstps 20824 . . 3  |-  ( G  e.  MetSp  ->  G  e.  TopSp
)
64, 5syl 16 . 2  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  G  e.  TopSp )
7 eqid 2467 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
8 eqid 2467 . . . . . 6  |-  ( -g `  G )  =  (
-g `  G )
97, 8grpsubf 15988 . . . . 5  |-  ( G  e.  Grp  ->  ( -g `  G ) : ( ( Base `  G
)  X.  ( Base `  G ) ) --> (
Base `  G )
)
102, 9syl 16 . . . 4  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  ( -g `  G ) : ( ( Base `  G
)  X.  ( Base `  G ) ) --> (
Base `  G )
)
11 rphalfcl 11256 . . . . . . . 8  |-  ( z  e.  RR+  ->  ( z  /  2 )  e.  RR+ )
1211adantl 466 . . . . . . 7  |-  ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  ->  (
z  /  2 )  e.  RR+ )
13 simplll 757 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( G  e. NrmGrp  /\  G  e.  Abel ) )
1413, 4syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  ->  G  e.  MetSp )
15 simpllr 758 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) ) )
1615simpld 459 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  ->  x  e.  ( Base `  G ) )
17 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  ->  u  e.  ( Base `  G ) )
18 eqid 2467 . . . . . . . . . . . . 13  |-  ( dist `  G )  =  (
dist `  G )
197, 18mscl 20830 . . . . . . . . . . . 12  |-  ( ( G  e.  MetSp  /\  x  e.  ( Base `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( x
( dist `  G )
u )  e.  RR )
2014, 16, 17, 19syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( x ( dist `  G ) u )  e.  RR )
2115simprd 463 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
y  e.  ( Base `  G ) )
22 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
v  e.  ( Base `  G ) )
237, 18mscl 20830 . . . . . . . . . . . 12  |-  ( ( G  e.  MetSp  /\  y  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )
)  ->  ( y
( dist `  G )
v )  e.  RR )
2414, 21, 22, 23syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( y ( dist `  G ) v )  e.  RR )
25 rpre 11238 . . . . . . . . . . . 12  |-  ( z  e.  RR+  ->  z  e.  RR )
2625ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
z  e.  RR )
27 lt2halves 10785 . . . . . . . . . . 11  |-  ( ( ( x ( dist `  G ) u )  e.  RR  /\  (
y ( dist `  G
) v )  e.  RR  /\  z  e.  RR )  ->  (
( ( x (
dist `  G )
u )  <  (
z  /  2 )  /\  ( y (
dist `  G )
v )  <  (
z  /  2 ) )  ->  ( (
x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  <  z ) )
2820, 24, 26, 27syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( dist `  G
) u )  < 
( z  /  2
)  /\  ( y
( dist `  G )
v )  <  (
z  /  2 ) )  ->  ( (
x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  <  z ) )
2913, 2syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  ->  G  e.  Grp )
307, 8grpsubcl 15989 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x ( -g `  G
) y )  e.  ( Base `  G
) )
3129, 16, 21, 30syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( x ( -g `  G ) y )  e.  ( Base `  G
) )
327, 8grpsubcl 15989 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) )  ->  (
u ( -g `  G
) v )  e.  ( Base `  G
) )
3329, 17, 22, 32syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( u ( -g `  G ) v )  e.  ( Base `  G
) )
347, 8grpsubcl 15989 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
u ( -g `  G
) y )  e.  ( Base `  G
) )
3529, 17, 21, 34syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( u ( -g `  G ) y )  e.  ( Base `  G
) )
367, 18mstri 20838 . . . . . . . . . . . . 13  |-  ( ( G  e.  MetSp  /\  (
( x ( -g `  G ) y )  e.  ( Base `  G
)  /\  ( u
( -g `  G ) v )  e.  (
Base `  G )  /\  ( u ( -g `  G ) y )  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  <_  ( ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) y ) )  +  ( ( u ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) ) ) )
3714, 31, 33, 35, 36syl13anc 1230 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  <_  ( ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) y ) )  +  ( ( u ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) ) ) )
3813simpld 459 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  ->  G  e. NrmGrp )
397, 8, 18ngpsubcan 20999 . . . . . . . . . . . . . 14  |-  ( ( G  e. NrmGrp  /\  (
x  e.  ( Base `  G )  /\  u  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  ->  (
( x ( -g `  G ) y ) ( dist `  G
) ( u (
-g `  G )
y ) )  =  ( x ( dist `  G ) u ) )
4038, 16, 17, 21, 39syl13anc 1230 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) y ) )  =  ( x (
dist `  G )
u ) )
41 eqid 2467 . . . . . . . . . . . . . . . . 17  |-  ( +g  `  G )  =  ( +g  `  G )
42 eqid 2467 . . . . . . . . . . . . . . . . 17  |-  ( invg `  G )  =  ( invg `  G )
437, 41, 42, 8grpsubval 15964 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
u ( -g `  G
) y )  =  ( u ( +g  `  G ) ( ( invg `  G
) `  y )
) )
4417, 21, 43syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( u ( -g `  G ) y )  =  ( u ( +g  `  G ) ( ( invg `  G ) `  y
) ) )
457, 41, 42, 8grpsubval 15964 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) )  ->  (
u ( -g `  G
) v )  =  ( u ( +g  `  G ) ( ( invg `  G
) `  v )
) )
4645adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( u ( -g `  G ) v )  =  ( u ( +g  `  G ) ( ( invg `  G ) `  v
) ) )
4744, 46oveq12d 6313 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( u (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  =  ( ( u ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ( dist `  G
) ( u ( +g  `  G ) ( ( invg `  G ) `  v
) ) ) )
487, 42grpinvcl 15966 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  y  e.  ( Base `  G ) )  -> 
( ( invg `  G ) `  y
)  e.  ( Base `  G ) )
4929, 21, 48syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( invg `  G ) `  y
)  e.  ( Base `  G ) )
507, 42grpinvcl 15966 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  v  e.  ( Base `  G ) )  -> 
( ( invg `  G ) `  v
)  e.  ( Base `  G ) )
5129, 22, 50syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( invg `  G ) `  v
)  e.  ( Base `  G ) )
527, 41, 18ngplcan 20996 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  (
( ( invg `  G ) `  y
)  e.  ( Base `  G )  /\  (
( invg `  G ) `  v
)  e.  ( Base `  G )  /\  u  e.  ( Base `  G
) ) )  -> 
( ( u ( +g  `  G ) ( ( invg `  G ) `  y
) ) ( dist `  G ) ( u ( +g  `  G
) ( ( invg `  G ) `
 v ) ) )  =  ( ( ( invg `  G ) `  y
) ( dist `  G
) ( ( invg `  G ) `
 v ) ) )
5313, 49, 51, 17, 52syl13anc 1230 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( u ( +g  `  G ) ( ( invg `  G ) `  y
) ) ( dist `  G ) ( u ( +g  `  G
) ( ( invg `  G ) `
 v ) ) )  =  ( ( ( invg `  G ) `  y
) ( dist `  G
) ( ( invg `  G ) `
 v ) ) )
547, 42, 18ngpinvds 20998 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  (
y  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( invg `  G ) `
 y ) (
dist `  G )
( ( invg `  G ) `  v
) )  =  ( y ( dist `  G
) v ) )
5513, 21, 22, 54syl12anc 1226 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( invg `  G ) `
 y ) (
dist `  G )
( ( invg `  G ) `  v
) )  =  ( y ( dist `  G
) v ) )
5647, 53, 553eqtrd 2512 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( u (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  =  ( y (
dist `  G )
v ) )
5740, 56oveq12d 6313 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) y ) )  +  ( ( u ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) ) )  =  ( ( x ( dist `  G ) u )  +  ( y (
dist `  G )
v ) ) )
5837, 57breqtrd 4477 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  <_  ( ( x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) ) )
597, 18mscl 20830 . . . . . . . . . . . . 13  |-  ( ( G  e.  MetSp  /\  (
x ( -g `  G
) y )  e.  ( Base `  G
)  /\  ( u
( -g `  G ) v )  e.  (
Base `  G )
)  ->  ( (
x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  e.  RR )
6014, 31, 33, 59syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  e.  RR )
6120, 24readdcld 9635 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x (
dist `  G )
u )  +  ( y ( dist `  G
) v ) )  e.  RR )
62 lelttr 9687 . . . . . . . . . . . 12  |-  ( ( ( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  e.  RR  /\  (
( x ( dist `  G ) u )  +  ( y (
dist `  G )
v ) )  e.  RR  /\  z  e.  RR )  ->  (
( ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  <_  ( (
x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  /\  ( ( x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  <  z )  ->  ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  <  z ) )
6360, 61, 26, 62syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  <_  ( (
x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  /\  ( ( x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  <  z )  ->  ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  <  z ) )
6458, 63mpand 675 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( dist `  G
) u )  +  ( y ( dist `  G ) v ) )  <  z  -> 
( ( x (
-g `  G )
y ) ( dist `  G ) ( u ( -g `  G
) v ) )  <  z ) )
6528, 64syld 44 . . . . . . . . 9  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( dist `  G
) u )  < 
( z  /  2
)  /\  ( y
( dist `  G )
v )  <  (
z  /  2 ) )  ->  ( (
x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  <  z ) )
6616, 17ovresd 6438 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( x ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) u )  =  ( x ( dist `  G
) u ) )
6766breq1d 4463 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) u )  < 
( z  /  2
)  <->  ( x (
dist `  G )
u )  <  (
z  /  2 ) ) )
6821, 22ovresd 6438 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  =  ( y ( dist `  G
) v ) )
6968breq1d 4463 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( y ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) v )  < 
( z  /  2
)  <->  ( y (
dist `  G )
v )  <  (
z  /  2 ) ) )
7067, 69anbi12d 710 . . . . . . . . 9  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) u )  < 
( z  /  2
)  /\  ( y
( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) v )  < 
( z  /  2
) )  <->  ( (
x ( dist `  G
) u )  < 
( z  /  2
)  /\  ( y
( dist `  G )
v )  <  (
z  /  2 ) ) ) )
7131, 33ovresd 6438 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y ) ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) ( u ( -g `  G ) v ) )  =  ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) ) )
7271breq1d 4463 . . . . . . . . 9  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z  <->  ( ( x ( -g `  G
) y ) (
dist `  G )
( u ( -g `  G ) v ) )  <  z ) )
7365, 70, 723imtr4d 268 . . . . . . . 8  |-  ( ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  /\  (
u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) ) )  -> 
( ( ( x ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) u )  < 
( z  /  2
)  /\  ( y
( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) v )  < 
( z  /  2
) )  ->  (
( x ( -g `  G ) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )
7473ralrimivva 2888 . . . . . . 7  |-  ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  ->  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  ( z  /  2 )  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  (
z  /  2 ) )  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )
75 breq2 4457 . . . . . . . . . . 11  |-  ( r  =  ( z  / 
2 )  ->  (
( x ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) u )  <  r  <->  ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  ( z  /  2 ) ) )
76 breq2 4457 . . . . . . . . . . 11  |-  ( r  =  ( z  / 
2 )  ->  (
( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r  <->  ( y ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) v )  <  ( z  /  2 ) ) )
7775, 76anbi12d 710 . . . . . . . . . 10  |-  ( r  =  ( z  / 
2 )  ->  (
( ( x ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) u )  < 
r  /\  ( y
( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) v )  < 
r )  <->  ( (
x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  ( z  /  2 )  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  (
z  /  2 ) ) ) )
7877imbi1d 317 . . . . . . . . 9  |-  ( r  =  ( z  / 
2 )  ->  (
( ( ( x ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) u )  < 
r  /\  ( y
( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) v )  < 
r )  ->  (
( x ( -g `  G ) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z )  <->  ( (
( x ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) u )  <  (
z  /  2 )  /\  ( y ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) v )  < 
( z  /  2
) )  ->  (
( x ( -g `  G ) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) ) )
79782ralbidv 2911 . . . . . . . 8  |-  ( r  =  ( z  / 
2 )  ->  ( A. u  e.  ( Base `  G ) A. v  e.  ( Base `  G ) ( ( ( x ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z )  <->  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  ( z  /  2 )  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  (
z  /  2 ) )  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) ) )
8079rspcev 3219 . . . . . . 7  |-  ( ( ( z  /  2
)  e.  RR+  /\  A. u  e.  ( Base `  G ) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  ( z  /  2 )  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  (
z  /  2 ) )  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )  ->  E. r  e.  RR+  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )
8112, 74, 80syl2anc 661 . . . . . 6  |-  ( ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  z  e.  RR+ )  ->  E. r  e.  RR+  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )
8281ralrimiva 2881 . . . . 5  |-  ( ( ( G  e. NrmGrp  /\  G  e.  Abel )  /\  (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) ) )  ->  A. z  e.  RR+  E. r  e.  RR+  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )
8382ralrimivva 2888 . . . 4  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  A. x  e.  ( Base `  G
) A. y  e.  ( Base `  G
) A. z  e.  RR+  E. r  e.  RR+  A. u  e.  ( Base `  G ) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) )
84 msxms 20823 . . . . . 6  |-  ( G  e.  MetSp  ->  G  e.  *MetSp )
85 eqid 2467 . . . . . . 7  |-  ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) )  =  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) )
867, 85xmsxmet 20825 . . . . . 6  |-  ( G  e.  *MetSp  ->  (
( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) )  e.  ( *Met `  ( Base `  G
) ) )
874, 84, 863syl 20 . . . . 5  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  (
( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) )  e.  ( *Met `  ( Base `  G
) ) )
88 eqid 2467 . . . . . 6  |-  ( MetOpen `  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) )  =  (
MetOpen `  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) )
8988, 88, 88txmetcn 20917 . . . . 5  |-  ( ( ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) )  e.  ( *Met `  ( Base `  G ) )  /\  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) )  e.  ( *Met `  ( Base `  G ) )  /\  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) )  e.  ( *Met `  ( Base `  G ) ) )  ->  ( ( -g `  G )  e.  ( ( ( MetOpen `  (
( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) )  tX  ( MetOpen `  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ) )  Cn  ( MetOpen `  ( ( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) ) )  <->  ( ( -g `  G ) : ( ( Base `  G
)  X.  ( Base `  G ) ) --> (
Base `  G )  /\  A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) A. z  e.  RR+  E. r  e.  RR+  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) ) ) )
9087, 87, 87, 89syl3anc 1228 . . . 4  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  (
( -g `  G )  e.  ( ( (
MetOpen `  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) ) 
tX  ( MetOpen `  (
( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) ) )  Cn  ( MetOpen
`  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) ) )  <->  ( ( -g `  G ) : ( ( Base `  G
)  X.  ( Base `  G ) ) --> (
Base `  G )  /\  A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) A. z  e.  RR+  E. r  e.  RR+  A. u  e.  ( Base `  G
) A. v  e.  ( Base `  G
) ( ( ( x ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) u )  <  r  /\  ( y ( (
dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) v )  <  r
)  ->  ( (
x ( -g `  G
) y ) ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ( u (
-g `  G )
v ) )  < 
z ) ) ) )
9110, 83, 90mpbir2and 920 . . 3  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  ( -g `  G )  e.  ( ( ( MetOpen `  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) )  tX  ( MetOpen
`  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) ) )  Cn  ( MetOpen `  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ) ) )
92 eqid 2467 . . . . . . 7  |-  ( TopOpen `  G )  =  (
TopOpen `  G )
9392, 7, 85mstopn 20821 . . . . . 6  |-  ( G  e.  MetSp  ->  ( TopOpen `  G )  =  (
MetOpen `  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) ) )
944, 93syl 16 . . . . 5  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  ( TopOpen
`  G )  =  ( MetOpen `  ( ( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) ) )
9594, 94oveq12d 6313 . . . 4  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  (
( TopOpen `  G )  tX  ( TopOpen `  G )
)  =  ( (
MetOpen `  ( ( dist `  G )  |`  (
( Base `  G )  X.  ( Base `  G
) ) ) ) 
tX  ( MetOpen `  (
( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) ) ) )
9695, 94oveq12d 6313 . . 3  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  (
( ( TopOpen `  G
)  tX  ( TopOpen `  G ) )  Cn  ( TopOpen `  G )
)  =  ( ( ( MetOpen `  ( ( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) )  tX  ( MetOpen `  ( ( dist `  G
)  |`  ( ( Base `  G )  X.  ( Base `  G ) ) ) ) )  Cn  ( MetOpen `  ( ( dist `  G )  |`  ( ( Base `  G
)  X.  ( Base `  G ) ) ) ) ) )
9791, 96eleqtrrd 2558 . 2  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  ( -g `  G )  e.  ( ( ( TopOpen `  G )  tX  ( TopOpen
`  G ) )  Cn  ( TopOpen `  G
) ) )
9892, 8istgp2 20456 . 2  |-  ( G  e.  TopGrp 
<->  ( G  e.  Grp  /\  G  e.  TopSp  /\  ( -g `  G )  e.  ( ( ( TopOpen `  G )  tX  ( TopOpen
`  G ) )  Cn  ( TopOpen `  G
) ) ) )
992, 6, 97, 98syl3anbrc 1180 1  |-  ( ( G  e. NrmGrp  /\  G  e. 
Abel )  ->  G  e.  TopGrp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   E.wrex 2818   class class class wbr 4453    X. cxp 5003    |` cres 5007   -->wf 5590   ` cfv 5594  (class class class)co 6295   RRcr 9503    + caddc 9507    < clt 9640    <_ cle 9641    / cdiv 10218   2c2 10597   RR+crp 11232   Basecbs 14506   +g cplusg 14571   distcds 14580   TopOpenctopn 14693   Grpcgrp 15924   invgcminusg 15925   -gcsg 15926   Abelcabl 16670   *Metcxmt 18271   MetOpencmopn 18276   TopSpctps 19264    Cn ccn 19591    tX ctx 19927   TopGrpctgp 20436   *MetSpcxme 20686   MetSpcmt 20687  NrmGrpcngp 20964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-supp 6914  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-map 7434  df-ixp 7482  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fsupp 7842  df-fi 7883  df-sup 7913  df-oi 7947  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-icc 11548  df-fz 11685  df-fzo 11805  df-seq 12088  df-hash 12386  df-struct 14508  df-ndx 14509  df-slot 14510  df-base 14511  df-sets 14512  df-ress 14513  df-plusg 14584  df-mulr 14585  df-sca 14587  df-vsca 14588  df-ip 14589  df-tset 14590  df-ple 14591  df-ds 14593  df-hom 14595  df-cco 14596  df-rest 14694  df-topn 14695  df-0g 14713  df-gsum 14714  df-topgen 14715  df-pt 14716  df-prds 14719  df-xrs 14773  df-qtop 14778  df-imas 14779  df-xps 14781  df-mre 14857  df-mrc 14858  df-acs 14860  df-plusf 15744  df-mgm 15745  df-sgrp 15784  df-mnd 15794  df-submnd 15839  df-grp 15928  df-minusg 15929  df-sbg 15930  df-mulg 15931  df-cntz 16226  df-cmn 16671  df-abl 16672  df-psmet 18279  df-xmet 18280  df-met 18281  df-bl 18282  df-mopn 18283  df-top 19266  df-bases 19268  df-topon 19269  df-topsp 19270  df-cn 19594  df-cnp 19595  df-tx 19929  df-hmeo 20122  df-tmd 20437  df-tgp 20438  df-xms 20689  df-ms 20690  df-tms 20691  df-nm 20969  df-ngp 20970
This theorem is referenced by:  nrgtgp  21047  nlmtlm  21068
  Copyright terms: Public domain W3C validator