MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nghmfval Structured version   Unicode version

Theorem nghmfval 20959
Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypothesis
Ref Expression
nmofval.1  |-  N  =  ( S normOp T )
Assertion
Ref Expression
nghmfval  |-  ( S NGHom 
T )  =  ( `' N " RR )

Proof of Theorem nghmfval
Dummy variables  s 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 6286 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  ( s normOp t )  =  ( S normOp T ) )
2 nmofval.1 . . . . . 6  |-  N  =  ( S normOp T )
31, 2syl6eqr 2521 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  ( s normOp t )  =  N )
43cnveqd 5171 . . . 4  |-  ( ( s  =  S  /\  t  =  T )  ->  `' ( s normOp t )  =  `' N
)
54imaeq1d 5329 . . 3  |-  ( ( s  =  S  /\  t  =  T )  ->  ( `' ( s
normOp t ) " RR )  =  ( `' N " RR ) )
6 df-nghm 20946 . . 3  |- NGHom  =  ( s  e. NrmGrp ,  t  e. NrmGrp  |->  ( `' ( s
normOp t ) " RR ) )
7 ovex 6302 . . . . . 6  |-  ( S
normOp T )  e.  _V
82, 7eqeltri 2546 . . . . 5  |-  N  e. 
_V
98cnvex 6723 . . . 4  |-  `' N  e.  _V
10 imaexg 6713 . . . 4  |-  ( `' N  e.  _V  ->  ( `' N " RR )  e.  _V )
119, 10ax-mp 5 . . 3  |-  ( `' N " RR )  e.  _V
125, 6, 11ovmpt2a 6410 . 2  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( S NGHom  T )  =  ( `' N " RR ) )
136mpt2ndm0 6493 . . 3  |-  ( -.  ( S  e. NrmGrp  /\  T  e. NrmGrp )  ->  ( S NGHom  T )  =  (/) )
14 nmoffn 20948 . . . . . . . . . 10  |-  normOp  Fn  (NrmGrp  X. NrmGrp
)
15 fndm 5673 . . . . . . . . . 10  |-  ( normOp  Fn  (NrmGrp  X. NrmGrp )  ->  dom  normOp  =  (NrmGrp  X. NrmGrp )
)
1614, 15ax-mp 5 . . . . . . . . 9  |-  dom  normOp  =  (NrmGrp  X. NrmGrp )
1716ndmov 6436 . . . . . . . 8  |-  ( -.  ( S  e. NrmGrp  /\  T  e. NrmGrp )  ->  ( S normOp T )  =  (/) )
182, 17syl5eq 2515 . . . . . . 7  |-  ( -.  ( S  e. NrmGrp  /\  T  e. NrmGrp )  ->  N  =  (/) )
1918cnveqd 5171 . . . . . 6  |-  ( -.  ( S  e. NrmGrp  /\  T  e. NrmGrp )  ->  `' N  =  `' (/) )
20 cnv0 5402 . . . . . 6  |-  `' (/)  =  (/)
2119, 20syl6eq 2519 . . . . 5  |-  ( -.  ( S  e. NrmGrp  /\  T  e. NrmGrp )  ->  `' N  =  (/) )
2221imaeq1d 5329 . . . 4  |-  ( -.  ( S  e. NrmGrp  /\  T  e. NrmGrp )  ->  ( `' N " RR )  =  ( (/) " RR ) )
23 0ima 5346 . . . 4  |-  ( (/) " RR )  =  (/)
2422, 23syl6eq 2519 . . 3  |-  ( -.  ( S  e. NrmGrp  /\  T  e. NrmGrp )  ->  ( `' N " RR )  =  (/) )
2513, 24eqtr4d 2506 . 2  |-  ( -.  ( S  e. NrmGrp  /\  T  e. NrmGrp )  ->  ( S NGHom  T )  =  ( `' N " RR ) )
2612, 25pm2.61i 164 1  |-  ( S NGHom 
T )  =  ( `' N " RR )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369    = wceq 1374    e. wcel 1762   _Vcvv 3108   (/)c0 3780    X. cxp 4992   `'ccnv 4993   dom cdm 4994   "cima 4997    Fn wfn 5576  (class class class)co 6277   RRcr 9482  NrmGrpcngp 20828   normOpcnmo 20942   NGHom cnghm 20943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560  ax-pre-sup 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-po 4795  df-so 4796  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-1st 6776  df-2nd 6777  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-sup 7892  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-ico 11526  df-nmo 20945  df-nghm 20946
This theorem is referenced by:  isnghm  20960
  Copyright terms: Public domain W3C validator