MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nghmco Structured version   Unicode version

Theorem nghmco 21371
Description: The composition of normed group homomorphisms is a normed group homomorphism. (Contributed by Mario Carneiro, 20-Oct-2015.)
Assertion
Ref Expression
nghmco  |-  ( ( F  e.  ( T NGHom 
U )  /\  G  e.  ( S NGHom  T ) )  ->  ( F  o.  G )  e.  ( S NGHom  U ) )

Proof of Theorem nghmco
StepHypRef Expression
1 nghmrcl1 21365 . . 3  |-  ( G  e.  ( S NGHom  T
)  ->  S  e. NrmGrp )
21adantl 466 . 2  |-  ( ( F  e.  ( T NGHom 
U )  /\  G  e.  ( S NGHom  T ) )  ->  S  e. NrmGrp )
3 nghmrcl2 21366 . . 3  |-  ( F  e.  ( T NGHom  U
)  ->  U  e. NrmGrp )
43adantr 465 . 2  |-  ( ( F  e.  ( T NGHom 
U )  /\  G  e.  ( S NGHom  T ) )  ->  U  e. NrmGrp )
5 nghmghm 21367 . . 3  |-  ( F  e.  ( T NGHom  U
)  ->  F  e.  ( T  GrpHom  U ) )
6 nghmghm 21367 . . 3  |-  ( G  e.  ( S NGHom  T
)  ->  G  e.  ( S  GrpHom  T ) )
7 ghmco 16413 . . 3  |-  ( ( F  e.  ( T 
GrpHom  U )  /\  G  e.  ( S  GrpHom  T ) )  ->  ( F  o.  G )  e.  ( S  GrpHom  U ) )
85, 6, 7syl2an 477 . 2  |-  ( ( F  e.  ( T NGHom 
U )  /\  G  e.  ( S NGHom  T ) )  ->  ( F  o.  G )  e.  ( S  GrpHom  U ) )
9 eqid 2457 . . . 4  |-  ( T
normOp U )  =  ( T normOp U )
109nghmcl 21360 . . 3  |-  ( F  e.  ( T NGHom  U
)  ->  ( ( T normOp U ) `  F )  e.  RR )
11 eqid 2457 . . . 4  |-  ( S
normOp T )  =  ( S normOp T )
1211nghmcl 21360 . . 3  |-  ( G  e.  ( S NGHom  T
)  ->  ( ( S normOp T ) `  G )  e.  RR )
13 remulcl 9594 . . 3  |-  ( ( ( ( T normOp U ) `  F )  e.  RR  /\  (
( S normOp T ) `
 G )  e.  RR )  ->  (
( ( T normOp U ) `  F )  x.  ( ( S
normOp T ) `  G
) )  e.  RR )
1410, 12, 13syl2an 477 . 2  |-  ( ( F  e.  ( T NGHom 
U )  /\  G  e.  ( S NGHom  T ) )  ->  ( (
( T normOp U ) `
 F )  x.  ( ( S normOp T ) `  G ) )  e.  RR )
15 eqid 2457 . . 3  |-  ( S
normOp U )  =  ( S normOp U )
1615, 9, 11nmoco 21370 . 2  |-  ( ( F  e.  ( T NGHom 
U )  /\  G  e.  ( S NGHom  T ) )  ->  ( ( S normOp U ) `  ( F  o.  G
) )  <_  (
( ( T normOp U ) `  F )  x.  ( ( S
normOp T ) `  G
) ) )
1715bddnghm 21359 . 2  |-  ( ( ( S  e. NrmGrp  /\  U  e. NrmGrp  /\  ( F  o.  G )  e.  ( S  GrpHom  U ) )  /\  ( ( ( ( T normOp U ) `
 F )  x.  ( ( S normOp T ) `  G ) )  e.  RR  /\  ( ( S normOp U ) `  ( F  o.  G ) )  <_  ( ( ( T normOp U ) `  F )  x.  (
( S normOp T ) `
 G ) ) ) )  ->  ( F  o.  G )  e.  ( S NGHom  U ) )
182, 4, 8, 14, 16, 17syl32anc 1236 1  |-  ( ( F  e.  ( T NGHom 
U )  /\  G  e.  ( S NGHom  T ) )  ->  ( F  o.  G )  e.  ( S NGHom  U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1819   class class class wbr 4456    o. ccom 5012   ` cfv 5594  (class class class)co 6296   RRcr 9508    x. cmul 9514    <_ cle 9646    GrpHom cghm 16391  NrmGrpcngp 21224   normOpcnmo 21338   NGHom cnghm 21339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ico 11560  df-0g 14859  df-topgen 14861  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-mhm 16093  df-grp 16184  df-ghm 16392  df-psmet 18538  df-xmet 18539  df-met 18540  df-bl 18541  df-mopn 18542  df-top 19526  df-bases 19528  df-topon 19529  df-topsp 19530  df-xms 20949  df-ms 20950  df-nm 21229  df-ngp 21230  df-nmo 21341  df-nghm 21342
This theorem is referenced by:  nmhmco  21389
  Copyright terms: Public domain W3C validator