Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwe Structured version   Visualization version   Unicode version

Theorem nfwe 4815
 Description: Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffr.r
nffr.a
Assertion
Ref Expression
nfwe

Proof of Theorem nfwe
StepHypRef Expression
1 df-we 4800 . 2
2 nffr.r . . . 4
3 nffr.a . . . 4
42, 3nffr 4813 . . 3
52, 3nfso 4766 . . 3
64, 5nfan 2031 . 2
71, 6nfxfr 1704 1
 Colors of variables: wff setvar class Syntax hints:   wa 376  wnf 1675  wnfc 2599   wor 4759   wfr 4795   wwe 4797 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-br 4396  df-po 4760  df-so 4761  df-fr 4798  df-we 4800 This theorem is referenced by:  nfoi  8047  aomclem6  35988
 Copyright terms: Public domain W3C validator