![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfwe | Structured version Visualization version Unicode version |
Description: Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nffr.r |
![]() ![]() ![]() ![]() |
nffr.a |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfwe |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-we 4800 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nffr.r |
. . . 4
![]() ![]() ![]() ![]() | |
3 | nffr.a |
. . . 4
![]() ![]() ![]() ![]() | |
4 | 2, 3 | nffr 4813 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 3 | nfso 4766 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 4, 5 | nfan 2031 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 6 | nfxfr 1704 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1677 ax-4 1690 ax-5 1766 ax-6 1813 ax-7 1859 ax-10 1932 ax-11 1937 ax-12 1950 ax-13 2104 ax-ext 2451 |
This theorem depends on definitions: df-bi 190 df-or 377 df-an 378 df-3or 1008 df-3an 1009 df-tru 1455 df-ex 1672 df-nf 1676 df-sb 1806 df-clab 2458 df-cleq 2464 df-clel 2467 df-nfc 2601 df-ral 2761 df-rex 2762 df-rab 2765 df-v 3033 df-dif 3393 df-un 3395 df-in 3397 df-ss 3404 df-nul 3723 df-if 3873 df-sn 3960 df-pr 3962 df-op 3966 df-br 4396 df-po 4760 df-so 4761 df-fr 4798 df-we 4800 |
This theorem is referenced by: nfoi 8047 aomclem6 35988 |
Copyright terms: Public domain | W3C validator |