MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfth Structured version   Unicode version

Theorem nfth 1630
Description: No variable is (effectively) free in a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
hbth.1  |-  ph
Assertion
Ref Expression
nfth  |-  F/ x ph

Proof of Theorem nfth
StepHypRef Expression
1 hbth.1 . . 3  |-  ph
21hbth 1629 . 2  |-  ( ph  ->  A. x ph )
32nfi 1628 1  |-  F/ x ph
Colors of variables: wff setvar class
Syntax hints:   F/wnf 1621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623
This theorem depends on definitions:  df-bi 185  df-nf 1622
This theorem is referenced by:  nftru  1631  nfequid  1797  exan  1978  sbc2ie  3392  uzindOLD  10953  infcvgaux1i  13753  iunxdif3  27640  exnel  29478  ellimcabssub0  31865
  Copyright terms: Public domain W3C validator