MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfth Structured version   Visualization version   Unicode version

Theorem nfth 1684
Description: No variable is (effectively) free in a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
hbth.1  |-  ph
Assertion
Ref Expression
nfth  |-  F/ x ph

Proof of Theorem nfth
StepHypRef Expression
1 hbth.1 . . 3  |-  ph
21hbth 1683 . 2  |-  ( ph  ->  A. x ph )
32nfi 1682 1  |-  F/ x ph
Colors of variables: wff setvar class
Syntax hints:   F/wnf 1675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677
This theorem depends on definitions:  df-bi 190  df-nf 1676
This theorem is referenced by:  nftru  1685  nfequid  1865  exan  2072  sbc2ie  3323  iunxdif3  4355  infcvgaux1i  13992  exnel  30520  elrnmpt1sf  37535  ellimcabssub0  37794
  Copyright terms: Public domain W3C validator