MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfth Structured version   Unicode version

Theorem nfth 1599
Description: No variable is (effectively) free in a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
hbth.1  |-  ph
Assertion
Ref Expression
nfth  |-  F/ x ph

Proof of Theorem nfth
StepHypRef Expression
1 hbth.1 . . 3  |-  ph
21hbth 1598 . 2  |-  ( ph  ->  A. x ph )
32nfi 1597 1  |-  F/ x ph
Colors of variables: wff setvar class
Syntax hints:   F/wnf 1590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592
This theorem depends on definitions:  df-bi 185  df-nf 1591
This theorem is referenced by:  nftru  1600  nfequid  1732  exan  1913  sbc2ie  3370  uzindOLD  10848  infcvgaux1i  13438  exnel  27761
  Copyright terms: Public domain W3C validator