Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsymdif Structured version   Unicode version

Theorem nfsymdif 3729
 Description: Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
nfsymdif.1
nfsymdif.2
Assertion
Ref Expression
nfsymdif

Proof of Theorem nfsymdif
StepHypRef Expression
1 df-symdif 3725 . 2
2 nfsymdif.1 . . . 4
3 nfsymdif.2 . . . 4
42, 3nfdif 3621 . . 3
53, 2nfdif 3621 . . 3
64, 5nfun 3656 . 2
71, 6nfcxfr 2617 1
 Colors of variables: wff setvar class Syntax hints:  wnfc 2605   cdif 3468   cun 3469   csymdif 3724 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rab 2816  df-dif 3474  df-un 3476  df-symdif 3725 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator