MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsup Structured version   Unicode version

Theorem nfsup 7913
Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
nfsup.1  |-  F/_ x A
nfsup.2  |-  F/_ x B
nfsup.3  |-  F/_ x R
Assertion
Ref Expression
nfsup  |-  F/_ x sup ( A ,  B ,  R )

Proof of Theorem nfsup
StepHypRef Expression
1 dfsup2 7904 . 2  |-  sup ( A ,  B ,  R )  =  U. ( B  \  (
( `' R " A )  u.  ( R " ( B  \ 
( `' R " A ) ) ) ) )
2 nfsup.2 . . . 4  |-  F/_ x B
3 nfsup.3 . . . . . . 7  |-  F/_ x R
43nfcnv 5171 . . . . . 6  |-  F/_ x `' R
5 nfsup.1 . . . . . 6  |-  F/_ x A
64, 5nfima 5335 . . . . 5  |-  F/_ x
( `' R " A )
72, 6nfdif 3610 . . . . . 6  |-  F/_ x
( B  \  ( `' R " A ) )
83, 7nfima 5335 . . . . 5  |-  F/_ x
( R " ( B  \  ( `' R " A ) ) )
96, 8nfun 3645 . . . 4  |-  F/_ x
( ( `' R " A )  u.  ( R " ( B  \ 
( `' R " A ) ) ) )
102, 9nfdif 3610 . . 3  |-  F/_ x
( B  \  (
( `' R " A )  u.  ( R " ( B  \ 
( `' R " A ) ) ) ) )
1110nfuni 4240 . 2  |-  F/_ x U. ( B  \  (
( `' R " A )  u.  ( R " ( B  \ 
( `' R " A ) ) ) ) )
121, 11nfcxfr 2603 1  |-  F/_ x sup ( A ,  B ,  R )
Colors of variables: wff setvar class
Syntax hints:   F/_wnfc 2591    \ cdif 3458    u. cun 3459   U.cuni 4234   `'ccnv 4988   "cima 4992   supcsup 7902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-xp 4995  df-cnv 4997  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-sup 7903
This theorem is referenced by:  iundisj  21936  itg2cnlem1  22146  iundisjf  27426  iundisjfi  27579  nfwsuc  29350  nfwlim  29354  totbndbnd  30261  aomclem8  30983  ssfiunibd  31463  stoweidlem62  31798  fourierdlem20  31863  fourierdlem31  31874  fourierdlem79  31922
  Copyright terms: Public domain W3C validator