Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsbd Structured version   Visualization version   Unicode version

Theorem nfsbd 2291
 Description: Deduction version of nfsb 2289. (Contributed by NM, 15-Feb-2013.)
Hypotheses
Ref Expression
nfsbd.1
nfsbd.2
Assertion
Ref Expression
nfsbd
Distinct variable group:   ,
Allowed substitution hints:   (,,)   (,,)

Proof of Theorem nfsbd
StepHypRef Expression
1 nfsbd.1 . . . 4
2 nfsbd.2 . . . 4
31, 2alrimi 1975 . . 3
4 nfsb4t 2238 . . 3
53, 4syl 17 . 2
6 axc16nf 2046 . 2
75, 6pm2.61d2 165 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4  wal 1450  wnf 1675  wsb 1805 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104 This theorem depends on definitions:  df-bi 190  df-an 378  df-ex 1672  df-nf 1676  df-sb 1806 This theorem is referenced by:  nfabd2  2631  wl-sb8eut  31976
 Copyright terms: Public domain W3C validator