Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsb Structured version   Visualization version   Unicode version

Theorem nfsb 2269
 Description: If is not free in , it is not free in when and are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfsb.1
Assertion
Ref Expression
nfsb
Distinct variable group:   ,
Allowed substitution hints:   (,,)

Proof of Theorem nfsb
StepHypRef Expression
1 axc16nf 2027 . 2
2 nfsb.1 . . 3
32nfsb4 2219 . 2
41, 3pm2.61i 168 1
 Colors of variables: wff setvar class Syntax hints:  wal 1442  wnf 1667  wsb 1797 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091 This theorem depends on definitions:  df-bi 189  df-an 373  df-ex 1664  df-nf 1668  df-sb 1798 This theorem is referenced by:  hbsb  2270  sb10f  2285  2sb8e  2296  sb8eu  2332  2mo  2380  cbvralf  3013  cbvreu  3017  cbvralsv  3030  cbvrexsv  3031  cbvrab  3043  cbvreucsf  3397  cbvrabcsf  3398  cbvopab1  4473  cbvmptf  4493  cbvmpt  4494  ralxpf  4981  cbviota  5551  sb8iota  5553  cbvriota  6262  dfoprab4f  6851  mo5f  28120  ax11-pm2  31438  2sb5nd  36927
 Copyright terms: Public domain W3C validator