MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfs1 Structured version   Unicode version

Theorem nfs1 2106
Description: If  y is not free in  ph,  x is not free in  [ y  /  x ] ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfs1.1  |-  F/ y
ph
Assertion
Ref Expression
nfs1  |-  F/ x [ y  /  x ] ph

Proof of Theorem nfs1
StepHypRef Expression
1 nfs1.1 . . . 4  |-  F/ y
ph
21nfri 1879 . . 3  |-  ( ph  ->  A. y ph )
32hbsb3 2105 . 2  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
43nfi 1628 1  |-  F/ x [ y  /  x ] ph
Colors of variables: wff setvar class
Syntax hints:   F/wnf 1621   [wsb 1744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-12 1859  ax-13 2004
This theorem depends on definitions:  df-bi 185  df-an 369  df-ex 1618  df-nf 1622  df-sb 1745
This theorem is referenced by:  sb8  2169  sb8e  2170
  Copyright terms: Public domain W3C validator