MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrmod Structured version   Visualization version   Unicode version

Theorem nfrmod 2963
Description: Deduction version of nfrmo 2965. (Contributed by NM, 17-Jun-2017.)
Hypotheses
Ref Expression
nfreud.1  |-  F/ y
ph
nfreud.2  |-  ( ph  -> 
F/_ x A )
nfreud.3  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfrmod  |-  ( ph  ->  F/ x E* y  e.  A  ps )

Proof of Theorem nfrmod
StepHypRef Expression
1 df-rmo 2744 . 2  |-  ( E* y  e.  A  ps  <->  E* y ( y  e.  A  /\  ps )
)
2 nfreud.1 . . 3  |-  F/ y
ph
3 nfcvf 2614 . . . . . 6  |-  ( -. 
A. x  x  =  y  ->  F/_ x y )
43adantl 468 . . . . 5  |-  ( (
ph  /\  -.  A. x  x  =  y )  -> 
F/_ x y )
5 nfreud.2 . . . . . 6  |-  ( ph  -> 
F/_ x A )
65adantr 467 . . . . 5  |-  ( (
ph  /\  -.  A. x  x  =  y )  -> 
F/_ x A )
74, 6nfeld 2599 . . . 4  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x  y  e.  A )
8 nfreud.3 . . . . 5  |-  ( ph  ->  F/ x ps )
98adantr 467 . . . 4  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x ps )
107, 9nfand 2007 . . 3  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x ( y  e.  A  /\  ps ) )
112, 10nfmod2 2311 . 2  |-  ( ph  ->  F/ x E* y
( y  e.  A  /\  ps ) )
121, 11nfxfrd 1696 1  |-  ( ph  ->  F/ x E* y  e.  A  ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371   A.wal 1441   F/wnf 1666    e. wcel 1886   E*wmo 2299   F/_wnfc 2578   E*wrmo 2739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430
This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1446  df-ex 1663  df-nf 1667  df-eu 2302  df-mo 2303  df-cleq 2443  df-clel 2446  df-nfc 2580  df-rmo 2744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator