MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrmo1 Structured version   Unicode version

Theorem nfrmo1 3026
Description:  x is not free in  E* x  e.  A ph. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
nfrmo1  |-  F/ x E* x  e.  A  ph

Proof of Theorem nfrmo1
StepHypRef Expression
1 df-rmo 2812 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
2 nfmo1 2297 . 2  |-  F/ x E* x ( x  e.  A  /\  ph )
31, 2nfxfr 1650 1  |-  F/ x E* x  e.  A  ph
Colors of variables: wff setvar class
Syntax hints:    /\ wa 367   F/wnf 1621    e. wcel 1823   E*wmo 2285   E*wrmo 2807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859
This theorem depends on definitions:  df-bi 185  df-ex 1618  df-nf 1622  df-eu 2288  df-mo 2289  df-rmo 2812
This theorem is referenced by:  nfdisj1  4423  2reu3  32432
  Copyright terms: Public domain W3C validator