Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrmo Structured version   Visualization version   Unicode version

Theorem nfrmo 2966
 Description: Bound-variable hypothesis builder for restricted uniqueness. (Contributed by NM, 16-Jun-2017.)
Hypotheses
Ref Expression
nfreu.1
nfreu.2
Assertion
Ref Expression
nfrmo

Proof of Theorem nfrmo
StepHypRef Expression
1 df-rmo 2745 . 2
2 nftru 1677 . . . 4
3 nfcvf 2615 . . . . . . 7
4 nfreu.1 . . . . . . . 8
54a1i 11 . . . . . . 7
63, 5nfeld 2600 . . . . . 6
7 nfreu.2 . . . . . . 7
87a1i 11 . . . . . 6
96, 8nfand 2008 . . . . 5
109adantl 468 . . . 4
112, 10nfmod2 2312 . . 3
1211trud 1453 . 2
131, 12nfxfr 1696 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wa 371  wal 1442   wtru 1445  wnf 1667   wcel 1887  wmo 2300  wnfc 2579  wrmo 2740 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431 This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1447  df-ex 1664  df-nf 1668  df-eu 2303  df-mo 2304  df-cleq 2444  df-clel 2447  df-nfc 2581  df-rmo 2745 This theorem is referenced by:  2rmorex  3244  2reurex  38602
 Copyright terms: Public domain W3C validator