MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrmo Structured version   Unicode version

Theorem nfrmo 3005
Description: Bound-variable hypothesis builder for restricted uniqueness. (Contributed by NM, 16-Jun-2017.)
Hypotheses
Ref Expression
nfreu.1  |-  F/_ x A
nfreu.2  |-  F/ x ph
Assertion
Ref Expression
nfrmo  |-  F/ x E* y  e.  A  ph

Proof of Theorem nfrmo
StepHypRef Expression
1 df-rmo 2784 . 2  |-  ( E* y  e.  A  ph  <->  E* y ( y  e.  A  /\  ph )
)
2 nftru 1674 . . . 4  |-  F/ y T.
3 nfcvf 2610 . . . . . . 7  |-  ( -. 
A. x  x  =  y  ->  F/_ x y )
4 nfreu.1 . . . . . . . 8  |-  F/_ x A
54a1i 11 . . . . . . 7  |-  ( -. 
A. x  x  =  y  ->  F/_ x A )
63, 5nfeld 2593 . . . . . 6  |-  ( -. 
A. x  x  =  y  ->  F/ x  y  e.  A )
7 nfreu.2 . . . . . . 7  |-  F/ x ph
87a1i 11 . . . . . 6  |-  ( -. 
A. x  x  =  y  ->  F/ x ph )
96, 8nfand 1982 . . . . 5  |-  ( -. 
A. x  x  =  y  ->  F/ x
( y  e.  A  /\  ph ) )
109adantl 468 . . . 4  |-  ( ( T.  /\  -.  A. x  x  =  y
)  ->  F/ x
( y  e.  A  /\  ph ) )
112, 10nfmod2 2280 . . 3  |-  ( T. 
->  F/ x E* y
( y  e.  A  /\  ph ) )
1211trud 1447 . 2  |-  F/ x E* y ( y  e.  A  /\  ph )
131, 12nfxfr 1693 1  |-  F/ x E* y  e.  A  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 371   A.wal 1436   T. wtru 1439   F/wnf 1664    e. wcel 1869   E*wmo 2267   F/_wnfc 2571   E*wrmo 2779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401
This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1441  df-ex 1661  df-nf 1665  df-eu 2270  df-mo 2271  df-cleq 2415  df-clel 2418  df-nfc 2573  df-rmo 2784
This theorem is referenced by:  2rmorex  3277  2reurex  38321
  Copyright terms: Public domain W3C validator