MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriotad Structured version   Unicode version

Theorem nfriotad 6214
Description: Deduction version of nfriota 6215. (Contributed by NM, 18-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfriotad.1  |-  F/ y
ph
nfriotad.2  |-  ( ph  ->  F/ x ps )
nfriotad.3  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nfriotad  |-  ( ph  -> 
F/_ x ( iota_ y  e.  A  ps )
)

Proof of Theorem nfriotad
StepHypRef Expression
1 df-riota 6206 . 2  |-  ( iota_ y  e.  A  ps )  =  ( iota y
( y  e.  A  /\  ps ) )
2 nfriotad.1 . . . . . 6  |-  F/ y
ph
3 nfnae 2119 . . . . . 6  |-  F/ y  -.  A. x  x  =  y
42, 3nfan 1988 . . . . 5  |-  F/ y ( ph  /\  -.  A. x  x  =  y )
5 nfcvf 2587 . . . . . . . 8  |-  ( -. 
A. x  x  =  y  ->  F/_ x y )
65adantl 467 . . . . . . 7  |-  ( (
ph  /\  -.  A. x  x  =  y )  -> 
F/_ x y )
7 nfriotad.3 . . . . . . . 8  |-  ( ph  -> 
F/_ x A )
87adantr 466 . . . . . . 7  |-  ( (
ph  /\  -.  A. x  x  =  y )  -> 
F/_ x A )
96, 8nfeld 2572 . . . . . 6  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x  y  e.  A )
10 nfriotad.2 . . . . . . 7  |-  ( ph  ->  F/ x ps )
1110adantr 466 . . . . . 6  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x ps )
129, 11nfand 1985 . . . . 5  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x ( y  e.  A  /\  ps ) )
134, 12nfiotad 5506 . . . 4  |-  ( (
ph  /\  -.  A. x  x  =  y )  -> 
F/_ x ( iota y ( y  e.  A  /\  ps )
) )
1413ex 435 . . 3  |-  ( ph  ->  ( -.  A. x  x  =  y  ->  F/_ x ( iota y
( y  e.  A  /\  ps ) ) ) )
15 nfiota1 5505 . . . 4  |-  F/_ y
( iota y ( y  e.  A  /\  ps ) )
16 eqidd 2424 . . . . 5  |-  ( A. x  x  =  y  ->  ( iota y ( y  e.  A  /\  ps ) )  =  ( iota y ( y  e.  A  /\  ps ) ) )
1716drnfc1 2581 . . . 4  |-  ( A. x  x  =  y  ->  ( F/_ x ( iota y ( y  e.  A  /\  ps ) )  <->  F/_ y ( iota y ( y  e.  A  /\  ps ) ) ) )
1815, 17mpbiri 236 . . 3  |-  ( A. x  x  =  y  -> 
F/_ x ( iota y ( y  e.  A  /\  ps )
) )
1914, 18pm2.61d2 163 . 2  |-  ( ph  -> 
F/_ x ( iota y ( y  e.  A  /\  ps )
) )
201, 19nfcxfrd 2563 1  |-  ( ph  -> 
F/_ x ( iota_ y  e.  A  ps )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370   A.wal 1435   F/wnf 1661    e. wcel 1872   F/_wnfc 2551   iotacio 5501   iota_crio 6205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2403
This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2410  df-cleq 2416  df-clel 2419  df-nfc 2553  df-ral 2714  df-rex 2715  df-sn 3937  df-uni 4158  df-iota 5503  df-riota 6206
This theorem is referenced by:  nfriota  6215
  Copyright terms: Public domain W3C validator