Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfreud Structured version   Visualization version   Unicode version

Theorem nfreud 2962
 Description: Deduction version of nfreu 2964. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
nfreud.1
nfreud.2
nfreud.3
Assertion
Ref Expression
nfreud

Proof of Theorem nfreud
StepHypRef Expression
1 df-reu 2743 . 2
2 nfreud.1 . . 3
3 nfcvf 2614 . . . . . 6
43adantl 468 . . . . 5
5 nfreud.2 . . . . . 6
65adantr 467 . . . . 5
74, 6nfeld 2599 . . . 4
8 nfreud.3 . . . . 5
98adantr 467 . . . 4
107, 9nfand 2007 . . 3
112, 10nfeud2 2310 . 2
121, 11nfxfrd 1696 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wa 371  wal 1441  wnf 1666   wcel 1886  weu 2298  wnfc 2578  wreu 2738 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430 This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1446  df-ex 1663  df-nf 1667  df-eu 2302  df-cleq 2443  df-clel 2446  df-nfc 2580  df-reu 2743 This theorem is referenced by:  nfreu  2964
 Copyright terms: Public domain W3C validator