Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrel Structured version   Unicode version

Theorem nfrel 4937
 Description: Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrel.1
Assertion
Ref Expression
nfrel

Proof of Theorem nfrel
StepHypRef Expression
1 df-rel 4858 . 2
2 nfrel.1 . . 3
3 nfcv 2585 . . 3
42, 3nfss 3458 . 2
51, 4nfxfr 1693 1
 Colors of variables: wff setvar class Syntax hints:  wnf 1664  wnfc 2571  cvv 3082   wss 3437   cxp 4849   wrel 4856 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401 This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ral 2781  df-in 3444  df-ss 3451  df-rel 4858 This theorem is referenced by:  nffun  5621
 Copyright terms: Public domain W3C validator