MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrecs Structured version   Unicode version

Theorem nfrecs 7036
Description: Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypothesis
Ref Expression
nfrecs.f  |-  F/_ x F
Assertion
Ref Expression
nfrecs  |-  F/_ xrecs ( F )

Proof of Theorem nfrecs
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-recs 7034 . 2  |- recs ( F )  =  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c ) ) ) }
2 nfcv 2616 . . . . 5  |-  F/_ x On
3 nfv 1712 . . . . . 6  |-  F/ x  a  Fn  b
4 nfcv 2616 . . . . . . 7  |-  F/_ x
b
5 nfrecs.f . . . . . . . . 9  |-  F/_ x F
6 nfcv 2616 . . . . . . . . 9  |-  F/_ x
( a  |`  c
)
75, 6nffv 5855 . . . . . . . 8  |-  F/_ x
( F `  (
a  |`  c ) )
87nfeq2 2633 . . . . . . 7  |-  F/ x
( a `  c
)  =  ( F `
 ( a  |`  c ) )
94, 8nfral 2840 . . . . . 6  |-  F/ x A. c  e.  b 
( a `  c
)  =  ( F `
 ( a  |`  c ) )
103, 9nfan 1933 . . . . 5  |-  F/ x
( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( F `
 ( a  |`  c ) ) )
112, 10nfrex 2917 . . . 4  |-  F/ x E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( F `
 ( a  |`  c ) ) )
1211nfab 2620 . . 3  |-  F/_ x { a  |  E. b  e.  On  (
a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c
) ) ) }
1312nfuni 4241 . 2  |-  F/_ x U. { a  |  E. b  e.  On  (
a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c
) ) ) }
141, 13nfcxfr 2614 1  |-  F/_ xrecs ( F )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 367    = wceq 1398   {cab 2439   F/_wnfc 2602   A.wral 2804   E.wrex 2805   U.cuni 4235   Oncon0 4867    |` cres 4990    Fn wfn 5565   ` cfv 5570  recscrecs 7033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-iota 5534  df-fv 5578  df-recs 7034
This theorem is referenced by:  nfrdg  7072  nfoi  7931  aomclem8  31249
  Copyright terms: Public domain W3C validator