Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfra2 Structured version   Unicode version

Theorem nfra2 2844
 Description: Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 33803. Contributed by Alan Sare 31-Dec-2011. (Contributed by NM, 31-Dec-2011.)
Assertion
Ref Expression
nfra2
Distinct variable group:   ,
Allowed substitution hints:   (,)   ()   (,)

Proof of Theorem nfra2
StepHypRef Expression
1 nfcv 2619 . 2
2 nfra1 2838 . 2
31, 2nfral 2843 1
 Colors of variables: wff setvar class Syntax hints:  wnf 1617  wral 2807 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1614  df-nf 1618  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812 This theorem is referenced by:  ralcom2  3022  invdisj  4445  reusv3  4664  dedekind  9761  dedekindle  9762  mreexexd  15065  gsummatr01lem4  19287  ordtconlem1  28067  islptre  31828  tratrb  33450  bnj1379  34032
 Copyright terms: Public domain W3C validator