Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfovd Structured version   Visualization version   Unicode version

Theorem nfovd 6313
 Description: Deduction version of bound-variable hypothesis builder nfov 6314. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
nfovd.2
nfovd.3
nfovd.4
Assertion
Ref Expression
nfovd

Proof of Theorem nfovd
StepHypRef Expression
1 df-ov 6291 . 2
2 nfovd.3 . . 3
3 nfovd.2 . . . 4
4 nfovd.4 . . . 4
53, 4nfopd 4182 . . 3
62, 5nffvd 5872 . 2
71, 6nfcxfrd 2590 1
 Colors of variables: wff setvar class Syntax hints:   wi 4  wnfc 2578  cop 3973  cfv 5581  (class class class)co 6288 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430 This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ral 2741  df-rex 2742  df-rab 2745  df-v 3046  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-br 4402  df-iota 5545  df-fv 5589  df-ov 6291 This theorem is referenced by:  nfov  6314  nfnegd  9867
 Copyright terms: Public domain W3C validator