Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfoprab3 Structured version   Visualization version   Unicode version

Theorem nfoprab3 6361
 Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 22-Aug-2013.)
Assertion
Ref Expression
nfoprab3

Proof of Theorem nfoprab3
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-oprab 6312 . 2
2 nfe1 1935 . . . . 5
32nfex 2050 . . . 4
43nfex 2050 . . 3
54nfab 2616 . 2
61, 5nfcxfr 2610 1
 Colors of variables: wff setvar class Syntax hints:   wa 376   wceq 1452  wex 1671  cab 2457  wnfc 2599  cop 3965  coprab 6309 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451 This theorem depends on definitions:  df-bi 190  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-oprab 6312 This theorem is referenced by:  ssoprab2b  6367  ov3  6452  tposoprab  7027
 Copyright terms: Public domain W3C validator