MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnth Structured version   Visualization version   Unicode version

Theorem nfnth 1687
Description: No variable is (effectively) free in a non-theorem. (Contributed by Mario Carneiro, 6-Dec-2016.)
Hypothesis
Ref Expression
nfnth.1  |-  -.  ph
Assertion
Ref Expression
nfnth  |-  F/ x ph

Proof of Theorem nfnth
StepHypRef Expression
1 nfnth.1 . . 3  |-  -.  ph
21pm2.21i 136 . 2  |-  ( ph  ->  A. x ph )
32nfi 1682 1  |-  F/ x ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3   A.wal 1450   F/wnf 1675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677
This theorem depends on definitions:  df-bi 190  df-nf 1676
This theorem is referenced by:  nffal  1688  nd1  9030  nd2  9031
  Copyright terms: Public domain W3C validator