Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnfc Structured version   Visualization version   Unicode version

Theorem nfnfc 2601
 Description: Hypothesis builder for . (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-13 2091. (Revised by Wolf Lammen, 10-Dec-2019.)
Hypothesis
Ref Expression
nfnfc.1
Assertion
Ref Expression
nfnfc

Proof of Theorem nfnfc
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2581 . 2
2 nfnfc.1 . . . . 5
3 nfcr 2584 . . . . 5
42, 3ax-mp 5 . . . 4
54nfnf 2032 . . 3
65nfal 2030 . 2
71, 6nfxfr 1696 1
 Colors of variables: wff setvar class Syntax hints:  wal 1442  wnf 1667   wcel 1887  wnfc 2579 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933 This theorem depends on definitions:  df-bi 189  df-an 373  df-ex 1664  df-nf 1668  df-nfc 2581 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator