![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfnfc | Structured version Visualization version Unicode version |
Description: Hypothesis builder for
![]() ![]() ![]() |
Ref | Expression |
---|---|
nfnfc.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfnfc |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfc 2581 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfnfc.1 |
. . . . 5
![]() ![]() ![]() ![]() | |
3 | nfcr 2584 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | ax-mp 5 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | nfnf 2032 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | nfal 2030 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 6 | nfxfr 1696 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1669 ax-4 1682 ax-5 1758 ax-6 1805 ax-7 1851 ax-10 1915 ax-11 1920 ax-12 1933 |
This theorem depends on definitions: df-bi 189 df-an 373 df-ex 1664 df-nf 1668 df-nfc 2581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |