Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnel Structured version   Unicode version

Theorem nfnel 2769
 Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfnel.1
nfnel.2
Assertion
Ref Expression
nfnel

Proof of Theorem nfnel
StepHypRef Expression
1 df-nel 2622 . 2
2 nfnel.1 . . . 4
3 nfnel.2 . . . 4
42, 3nfel 2598 . . 3
54nfn 1957 . 2
61, 5nfxfr 1693 1
 Colors of variables: wff setvar class Syntax hints:   wn 3  wnf 1664   wcel 1869  wnfc 2571   wnel 2620 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-10 1888  ax-11 1893  ax-12 1906  ax-ext 2401 This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1441  df-ex 1661  df-nf 1665  df-cleq 2415  df-clel 2418  df-nfc 2573  df-nel 2622 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator