MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfneg Structured version   Unicode version

Theorem nfneg 9807
Description: Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfneg.1  |-  F/_ x A
Assertion
Ref Expression
nfneg  |-  F/_ x -u A

Proof of Theorem nfneg
StepHypRef Expression
1 nfneg.1 . . . 4  |-  F/_ x A
21a1i 11 . . 3  |-  ( T. 
->  F/_ x A )
32nfnegd 9806 . 2  |-  ( T. 
->  F/_ x -u A
)
43trud 1407 1  |-  F/_ x -u A
Colors of variables: wff setvar class
Syntax hints:   T. wtru 1399   F/_wnfc 2602   -ucneg 9797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-iota 5534  df-fv 5578  df-ov 6273  df-neg 9799
This theorem is referenced by:  riotaneg  10513  zriotaneg  10974  infcvgaux1i  13750  mbfposb  22226  dvfsum2  22601  neglimc  31892  stoweidlem23  32044  stoweidlem47  32068
  Copyright terms: Public domain W3C validator