Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfneg Structured version   Visualization version   Unicode version

Theorem nfneg 9871
 Description: Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfneg.1
Assertion
Ref Expression
nfneg

Proof of Theorem nfneg
StepHypRef Expression
1 nfneg.1 . . . 4
21a1i 11 . . 3
32nfnegd 9870 . 2
43trud 1453 1
 Colors of variables: wff setvar class Syntax hints:   wtru 1445  wnfc 2579  cneg 9861 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431 This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-iota 5546  df-fv 5590  df-ov 6293  df-neg 9863 This theorem is referenced by:  riotaneg  10586  zriotaneg  11049  infcvgaux1i  13915  mbfposb  22609  dvfsum2  22986  neglimc  37728  stoweidlem23  37883  stoweidlem47  37908
 Copyright terms: Public domain W3C validator