MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnd Structured version   Unicode version

Theorem nfnd 1930
Description: Deduction associated with nfnt 1928. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
nfnd.1  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfnd  |-  ( ph  ->  F/ x  -.  ps )

Proof of Theorem nfnd
StepHypRef Expression
1 nfnd.1 . 2  |-  ( ph  ->  F/ x ps )
2 nfnt 1928 . 2  |-  ( F/ x ps  ->  F/ x  -.  ps )
31, 2syl 17 1  |-  ( ph  ->  F/ x  -.  ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   F/wnf 1637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-12 1878
This theorem depends on definitions:  df-bi 185  df-ex 1634  df-nf 1638
This theorem is referenced by:  nfand  1953  nfexd  1980  cbvexd  2053  nfexd2  2100  nfned  2736  nfneld  2748  nfrexd  2866  axpowndlem3  9006  axpowndlem4  9007  axregndlem2  9010  axregnd  9011  axregndOLD  9012  distel  30023  bj-cbvexdv  30865
  Copyright terms: Public domain W3C validator