MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfna1 Structured version   Unicode version

Theorem nfna1 1846
Description: A convenience theorem particularly designed to remove dependencies on ax-11 1786 in conjunction with disjunctors. (Contributed by Wolf Lammen, 2-Sep-2018.)
Assertion
Ref Expression
nfna1  |-  F/ x  -.  A. x ph

Proof of Theorem nfna1
StepHypRef Expression
1 nfa1 1840 . 2  |-  F/ x A. x ph
21nfn 1844 1  |-  F/ x  -.  A. x ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3   A.wal 1372   F/wnf 1594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-12 1798
This theorem depends on definitions:  df-bi 185  df-ex 1592  df-nf 1595
This theorem is referenced by:  dvelimhw  1897  nfeqf  2013  equs5  2060  nfsb2  2068  sbco2  2129  sbco3  2132  sb9  2144  axpowndlem2  8964  axpowndlem3  8966  axregnd  8972  wl-cbvalnaed  29550  wl-equsb3  29569  wl-sbcom2d-lem1  29574  wl-mo2dnae  29584  wl-ax11-lem3  29592  wl-ax11-lem4  29593  wl-ax11-lem6  29595  wl-ax11-lem7  29596  bj-equs5v  33290  bj-nfsb2v  33298
  Copyright terms: Public domain W3C validator