MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfna1 Structured version   Unicode version

Theorem nfna1 1931
Description: A convenience theorem particularly designed to remove dependencies on ax-11 1866 in conjunction with disjunctors. (Contributed by Wolf Lammen, 2-Sep-2018.)
Assertion
Ref Expression
nfna1  |-  F/ x  -.  A. x ph

Proof of Theorem nfna1
StepHypRef Expression
1 nfa1 1925 . 2  |-  F/ x A. x ph
21nfn 1929 1  |-  F/ x  -.  A. x ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3   A.wal 1403   F/wnf 1637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-12 1878
This theorem depends on definitions:  df-bi 185  df-ex 1634  df-nf 1638
This theorem is referenced by:  dvelimhw  1983  nfeqf  2071  equs5  2116  nfsb2  2124  bj-equs5v  30896  bj-nfsb2v  30904  wl-equsb3  31371  wl-sbcom2d-lem1  31376  wl-ax11-lem3  31399  wl-ax11-lem4  31400  wl-ax11-lem6  31402  wl-ax11-lem7  31403
  Copyright terms: Public domain W3C validator