Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiso Structured version   Visualization version   Unicode version

Theorem nfiso 6233
 Description: Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
nfiso.1
nfiso.2
nfiso.3
nfiso.4
nfiso.5
Assertion
Ref Expression
nfiso

Proof of Theorem nfiso
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isom 5598 . 2
2 nfiso.1 . . . 4
3 nfiso.4 . . . 4
4 nfiso.5 . . . 4
52, 3, 4nff1o 5826 . . 3
6 nfcv 2612 . . . . . . 7
7 nfiso.2 . . . . . . 7
8 nfcv 2612 . . . . . . 7
96, 7, 8nfbr 4440 . . . . . 6
102, 6nffv 5886 . . . . . . 7
11 nfiso.3 . . . . . . 7
122, 8nffv 5886 . . . . . . 7
1310, 11, 12nfbr 4440 . . . . . 6
149, 13nfbi 2037 . . . . 5
153, 14nfral 2789 . . . 4
163, 15nfral 2789 . . 3
175, 16nfan 2031 . 2
181, 17nfxfr 1704 1
 Colors of variables: wff setvar class Syntax hints:   wb 189   wa 376  wnf 1675  wnfc 2599  wral 2756   class class class wbr 4395  wf1o 5588  cfv 5589   wiso 5590 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator