Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiotad Structured version   Unicode version

 Description: Deduction version of nfiota 5569. (Contributed by NM, 18-Feb-2013.)
Hypotheses
Ref Expression
Assertion
Ref Expression

Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5566 . 2
2 nfv 1755 . . . 4
3 nfiotad.1 . . . . 5
4 nfiotad.2 . . . . . . 7
54adantr 466 . . . . . 6
6 nfcvf 2605 . . . . . . . 8
76adantl 467 . . . . . . 7
8 nfcvd 2581 . . . . . . 7
97, 8nfeqd 2587 . . . . . 6
105, 9nfbid 1993 . . . . 5
113, 10nfald2 2132 . . . 4
122, 11nfabd 2602 . . 3
1312nfunid 4226 . 2
141, 13nfcxfrd 2579 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 187   wa 370  wal 1435  wnf 1661  cab 2407  wnfc 2566  cuni 4219  cio 5563 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401 This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ral 2776  df-rex 2777  df-sn 3999  df-uni 4220  df-iota 5565 This theorem is referenced by:  nfiota  5569  nfriotad  6276
 Copyright terms: Public domain W3C validator