![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfint | Structured version Visualization version Unicode version |
Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
nfint.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfint |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfint2 4205 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfint.1 |
. . . 4
![]() ![]() ![]() ![]() | |
3 | nfv 1764 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | nfral 2769 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | nfab 2596 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | nfcxfr 2590 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1672 ax-4 1685 ax-5 1761 ax-6 1808 ax-7 1854 ax-10 1918 ax-11 1923 ax-12 1936 ax-13 2091 ax-ext 2431 |
This theorem depends on definitions: df-bi 190 df-an 377 df-tru 1450 df-ex 1667 df-nf 1671 df-sb 1801 df-clab 2438 df-cleq 2444 df-clel 2447 df-nfc 2581 df-ral 2741 df-int 4204 |
This theorem is referenced by: onminsb 6613 oawordeulem 7241 nnawordex 7324 rankidb 8257 cardmin2 8418 cardaleph 8506 cardmin 8975 ldsysgenld 28988 sltval2 30548 nobndlem5 30590 aomclem8 35920 |
Copyright terms: Public domain | W3C validator |