MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffvd Structured version   Unicode version

Theorem nffvd 5712
Description: Deduction version of bound-variable hypothesis builder nffv 5710. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nffvd.2  |-  ( ph  -> 
F/_ x F )
nffvd.3  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nffvd  |-  ( ph  -> 
F/_ x ( F `
 A ) )

Proof of Theorem nffvd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2594 . . 3  |-  F/_ x { z  |  A. x  z  e.  F }
2 nfaba1 2594 . . 3  |-  F/_ x { z  |  A. x  z  e.  A }
31, 2nffv 5710 . 2  |-  F/_ x
( { z  | 
A. x  z  e.  F } `  {
z  |  A. x  z  e.  A }
)
4 nffvd.2 . . 3  |-  ( ph  -> 
F/_ x F )
5 nffvd.3 . . 3  |-  ( ph  -> 
F/_ x A )
6 nfnfc1 2592 . . . . 5  |-  F/ x F/_ x F
7 nfnfc1 2592 . . . . 5  |-  F/ x F/_ x A
86, 7nfan 1861 . . . 4  |-  F/ x
( F/_ x F  /\  F/_ x A )
9 abidnf 3140 . . . . . 6  |-  ( F/_ x F  ->  { z  |  A. x  z  e.  F }  =  F )
109adantr 465 . . . . 5  |-  ( (
F/_ x F  /\  F/_ x A )  ->  { z  |  A. x  z  e.  F }  =  F )
11 abidnf 3140 . . . . . 6  |-  ( F/_ x A  ->  { z  |  A. x  z  e.  A }  =  A )
1211adantl 466 . . . . 5  |-  ( (
F/_ x F  /\  F/_ x A )  ->  { z  |  A. x  z  e.  A }  =  A )
1310, 12fveq12d 5709 . . . 4  |-  ( (
F/_ x F  /\  F/_ x A )  -> 
( { z  | 
A. x  z  e.  F } `  {
z  |  A. x  z  e.  A }
)  =  ( F `
 A ) )
148, 13nfceqdf 2584 . . 3  |-  ( (
F/_ x F  /\  F/_ x A )  -> 
( F/_ x ( { z  |  A. x  z  e.  F } `  { z  |  A. x  z  e.  A } )  <->  F/_ x ( F `  A ) ) )
154, 5, 14syl2anc 661 . 2  |-  ( ph  ->  ( F/_ x ( { z  |  A. x  z  e.  F } `  { z  |  A. x  z  e.  A } )  <->  F/_ x ( F `  A ) ) )
163, 15mpbii 211 1  |-  ( ph  -> 
F/_ x ( F `
 A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1367    = wceq 1369    e. wcel 1756   {cab 2429   F/_wnfc 2575   ` cfv 5430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ral 2732  df-rex 2733  df-rab 2736  df-v 2986  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-br 4305  df-iota 5393  df-fv 5438
This theorem is referenced by:  nfovd  6125  nfixp  7294
  Copyright terms: Public domain W3C validator