MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nff1o Structured version   Unicode version

Theorem nff1o 5820
Description: Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nff1o.1  |-  F/_ x F
nff1o.2  |-  F/_ x A
nff1o.3  |-  F/_ x B
Assertion
Ref Expression
nff1o  |-  F/ x  F : A -1-1-onto-> B

Proof of Theorem nff1o
StepHypRef Expression
1 df-f1o 5601 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
2 nff1o.1 . . . 4  |-  F/_ x F
3 nff1o.2 . . . 4  |-  F/_ x A
4 nff1o.3 . . . 4  |-  F/_ x B
52, 3, 4nff1 5785 . . 3  |-  F/ x  F : A -1-1-> B
62, 3, 4nffo 5800 . . 3  |-  F/ x  F : A -onto-> B
75, 6nfan 1875 . 2  |-  F/ x
( F : A -1-1-> B  /\  F : A -onto-> B )
81, 7nfxfr 1625 1  |-  F/ x  F : A -1-1-onto-> B
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369   F/wnf 1599   F/_wnfc 2615   -1-1->wf1 5591   -onto->wfo 5592   -1-1-onto->wf1o 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2822  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-br 4454  df-opab 4512  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601
This theorem is referenced by:  nfiso  6219  nfsum1  13492  nfsum  13493  nfcprod1  28969  nfcprod  28970  stoweidlem35  31658
  Copyright terms: Public domain W3C validator