MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nff1 Structured version   Unicode version

Theorem nff1 5772
Description: Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nff1.1  |-  F/_ x F
nff1.2  |-  F/_ x A
nff1.3  |-  F/_ x B
Assertion
Ref Expression
nff1  |-  F/ x  F : A -1-1-> B

Proof of Theorem nff1
StepHypRef Expression
1 df-f1 5586 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
2 nff1.1 . . . 4  |-  F/_ x F
3 nff1.2 . . . 4  |-  F/_ x A
4 nff1.3 . . . 4  |-  F/_ x B
52, 3, 4nff 5720 . . 3  |-  F/ x  F : A --> B
62nfcnv 5174 . . . 4  |-  F/_ x `' F
76nffun 5603 . . 3  |-  F/ x Fun  `' F
85, 7nfan 1870 . 2  |-  F/ x
( F : A --> B  /\  Fun  `' F
)
91, 8nfxfr 1620 1  |-  F/ x  F : A -1-1-> B
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369   F/wnf 1594   F/_wnfc 2610   `'ccnv 4993   Fun wfun 5575   -->wf 5577   -1-1->wf1 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ral 2814  df-rab 2818  df-v 3110  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-sn 4023  df-pr 4025  df-op 4029  df-br 4443  df-opab 4501  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586
This theorem is referenced by:  nff1o  5807  iundom2g  8906
  Copyright terms: Public domain W3C validator